USDA Foreign Agricultural Service ## **GAIN Report** Global Agriculture Information Network Template Version 2.09 Required Report - public distribution **Date:** 7/15/2007 **GAIN Report Number:** MX7049 # Mexico Biotechnology Annual 2007 Approved by: Suzanne Heinen U.S. Embassy Mexico City Prepared by: Benjamin Juarez & Jeff Nawn #### **Report Highlights:** Although Mexico does not maintain any significant barriers to the importation of biotechnology derived crops, or foods derived from biotechnology, the implementing regulations of the Biosafety Law have yet to be approved or published, thus leaving a number of gaps in Mexico's biotechnology policy framework. Official sources estimate that the implementing regulations will be in place within the next few months, thus clearing the way for research, investment, and commercialization of biotechnology derived agricultural products. These regulations will serve to supplement the Biosafety Law, passed in February of 2005, by establishing the respective responsibilities and jurisdictions of the Mexican ministries and agencies that monitor and/or enforce biotechnology related experiments, production, and commercialization. Includes PSD Changes: No Includes Trade Matrix: No Annual Report Mexico [MX1] ### **Table of Contents** | Executive Summary | . 3 | |------------------------------------|-----| | Biotechnology Trade and Production | . 4 | | Biotechnology Policy | . 4 | | Capacity Building and Outreach | .8 | | Marketing Issues | | #### **Executive Summary** Driven by population growth, an expanding economy, and an increasingly market-oriented agriculture sector, Mexico has now emerged as the United States' second largest agricultural trading partner. Mexico now accounts for roughly 14 percent of total U.S. agricultural exports, and 10 percent of U.S. agricultural imports. The United States remains Mexico's principal agricultural trading partner, with more than two-thirds of the country's agricultural imports coming from the United States. In CY 2006 U.S. exports of agricultural, fish, and forestry products to Mexico were valued at U.S. \$11.5 billion. The North American Free Trade Agreement (NAFTA) has enabled the United States and Mexico to take greater advantage of the complementary trading relationship. For example, the cross-border integration of the grains and oilseeds supply chain since the implementation of the NAFTA has allowed the Mexican poultry and hog industries to expand dramatically, allowing those industries to meet Mexican consumers' increasing demand for meat. This past year was marked by considerable controversy surrounding the importation of agricultural commodities, specifically rice, when a low-level presence of a non-approved biotechnology event was discovered. However, traditionally in Mexico the main focus of the biotechnology debate has been on biodiversity and corn. Many environmental and indigenous groups have been opposed to the introduction of genetically engineered (GE) plants, fearing that they may contaminate native corn varieties. Corn originated in Mexico, and is home to 3,500 native varieties. These activist groups have used threats to the country's biodiversity and the integrity of these native varieties as arguments for a safeguard against the introduction of transgenic crops in Mexico. Mexico boasts a considerable biotechnology infrastructure, including world-renowned researchers and research institutions, a government commission dedicated to coordinating domestic biotechnology policy, and active private sector organizations that promote the adoption and use of biotechnology. For example, there are more than 110 research institutions with about 12,000 researchers registered in the National Research System who actively publish in peer-reviewed international journals. Approximately 10 percent of these researchers work in areas related to biotechnology applications for livestock, agriculture, pollution treatment, and food production. Of the approximately 1,000 Ph.D. students graduating per year, approximately 10 percent are trained in biotechnology and related areas. Mexico's widely respected professional association for biotechnology, the Mexican Society of Biotechnology and Bioengineering (SMBB), was founded in 1982. Its membership of practicing professionals and students includes more than 800 associates. The SMBB promotes technology transfer between the private and public sectors and serves to advocate for harmonization of biotechnology regulations. Mexico's biotechnology laws and regulations are designed to prevent and control the possible risks from the use and application of biotechnology products to human health, vegetal and animal health, and environmental well-being. The comprehensive Biosafety Law, passed in February 2005, addressed a number of legislative gaps for the regulation and commercialization of biotechnology derived products. This law, which put Mexico in line with its Cartegna Protocol on Biosafety (CPB) obligations, must still be complemented with implementing regulations. These implementing regulations, or "Reglamentos", will help to harmonize and consolidate the current fragmented nature of Mexico's biotech policies. Despite the fact that many government and private sources had expected the regulations to have been approved and published last year, they were not. Sources indicate that different Ministries within the government are negotiating the precise parameters and responsibilities that will be defined in the reglamentos. Nonetheless, many Government of Mexico (GOM) officials remain optimistic that these regulations will be finalized and published in Mexico's Federal Register this year. #### **Biotechnology Trade and Production** Mexico continues to import significant amounts of biotech-derived agricultural goods from the United States. In calendar year 2006 these imports included 7.5 MMT of corn, 3.2 MMT of cracked corn, 3.8 MMT of soybeans, and 384,000 MT of cotton. U.S. exports of these commodities to Mexico are expected to increase over the next few years as tariffs and tariff rate quotas under NAFTA are to be completely eliminated as of January of 2008, and as demand for corn and soy from the livestock sector continues to grow. In 1996 Mexican farmers were among the first in the world to adopt biotechnology crops for experimental purposes. However, much to the chagrin of many producers, eleven years later Mexico still does not commercially produce any biotechnology derived crops. Those crops that are grown for experimental purposes are done so in accordance with the Biosafety Law, which governs the importation, domestic shipment, and establishment of field trials for organisms that have been genetically engineered. Information on transgenic crops, and their planted areas, is very difficult to obtain because the Mexican government does not maintain official statistics on these crops, and industry information tends to be limited. However, industry sources have stated that Mexican farmers planted approximately 250,000 acres (100,000 hectares) of biotech crops for experimental purposes in calendar year 2006, mainly cotton and soybean. Genetically engineered cotton has proven to be an important tool in controlling insect infestations and reducing the number of pesticide sprayings. Insect-protected (*Bt*) cotton is effective in controlling the pink bollworm and cotton bollworm, two of the seven predominant insects that plague cotton in Mexico. Other biotech crops, of uncertain hectarage, that are currently in field trials in Mexico, include: - Roundup Ready Alfalfa (herbicide tolerant); - Roundup Ready Flex Cotton (enhanced herbicide tolerant); and, - Bollgard II/Roundup Ready Flex Cotton (enhanced insect resistant/herbicide tolerant). All biotechnology crops that are being tested in Mexico were developed in the United States and have passed through the U.S. regulatory system. #### **Biotechnology Policy** #### **BIO-SAFETY LAW AND IMPLEMENTING REGULATIONS** The most significant biotechnology policy-related event that has taken place in recent years in Mexico was the passage of the Biosafety Law in February of 2005. This law codified biotechnology policy and put the country's regulations in line with its CPB obligations. It also defined the respective responsibilities and jurisdictions of the Mexican ministries and agencies that monitor and/or enforce biotechnology regulations. In general terms, the biotechnology policy enforcement and regulation responsibilities within the Mexican Government are as follows: - The Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) - The role of SAGARPA is to analyze and assess, on a case-by-case basis, all of the potential risks to animal, vegetal, and aquatic health, as well as to the environment and biological diversity, posed by activities carried out with genetically modified organisms (GMOs), based on the risk assessments and results reports drafted and filed by the interested parties. Moreover, SAGARPA is responsible for deciding which GMO related activities are permissible, and issues permits for those activities. SAGARPA also provides quidelines and parameters for - all GMO-related experiments and activities. These activities include field trials, pilot program releases, commercial release, marketing, and import and export of GMOs. Lastly, SAGARPA is to monitor the effects that accidental or permitted release of GMOs may cause to animal, vegetal, aquatic health, and biological diversity. - The Secretariat of Environment and Natural Resources (SEMARNAT) SEMARNAT analyzes and assesses, on a case-by-case basis, the potential risks that activities carried out with GMOs may cause to the environment and biological diversity. Theses analyses are based on risk studies and results reports drafted and filed by the interested parties. In addition, SEMARNAT is responsible for permitting and licensing activities that involve the
environmental release of GMOs, and is charged with providing guidelines and parameters for such activities. SEMARNAT also monitors the effects on the environment or biological diversity that may be caused by the accidental release of GMOs. In the instances when SAGARPA has primary responsibility for the experiment or activity, SEMARNAT is still responsible for issuing a bio-safety opinion prior to the SAGARPA resolution. - **The Secretariat of Health (SALUD) -** The role of SALUD is to assure the food safety of biotechnology-derived agricultural products destined for use as medicines or human consumption. SALUD also assesses, on a case-by-case basis, studies drafted and filed by interested parties on the safety and potential risks of GMOs authorized under the Biosafety Law. Mexico coordinates its biotechnology policy activities through the Inter-ministerial Commission on Biosecurity and Genetically Modified Organisms (CIBIOGEM), which was created in 1999 to coordinate federal policy related to the production, exportation, movement, propagation, release, consumption, and, in general, advantageous use of GE organisms and their products and by-products. CIBIOGEM is comprised of Mexico's National Council of Science and Technology (CONACYT), plus representatives from the ministries of Agriculture, Environment and Natural Resources, Health, Treasury, Economy, and Education. It is run by an Executive Secretary, who, according to the Bio-safety Law, is nominated by CONACYT after consultations with the member ministries, and is approved by the President. A list of those biotechnology crops that have been approved for human consumption can be found in Appendix A. Unlike the United States, Mexico does not make a distinction between food and feed approval, but rather approves both for human consumption. Mexico does allow for field-testing of biotechnology crops under the aforementioned Bio-safety Law, but it does not allow for the commercial planting of biotechnology crops. A list of the biotechnology crops that have been approved for field-testing can be found in Appendix B. As already mentioned, the GOM has yet to publish the implementing regulations of the Biosafety Law. As a result, there are still a number of issues that must be clarified and codified with regard to how biotechnology policies are implemented and enforced in Mexico. Because the Bio-safety Law establishes a broad framework for the country, but not specific protocols, a certain degree of confusion persists with regards to jurisdiction and authority. A good example of the gaps and inefficiencies in Mexico's biotech polices is the case of biotech cotton. Since the approval of the Bio-safety Law in 2005 cotton growers have faced significant delays in obtaining the proper governmental permits and authorizations for genetically modified cottonseed (See MX6050). In fact, this past year bureaucratic delays nearly prevented cotton farmers from receiving requisite transgenic cottonseed permits in time for planting. Cotton growers in La Laguna region (Coahuila and Durango states) even asked their respective Governors to intervene with the federal government on their behalf in order to expedite the process. It should be noted that the objective of these implementing regulations is to supplement the Bio-safety Law by: - Authorizing relevant agencies to issue environmental release permits for GE organisms: - 2. Defining the notification process for the confined use of GE organisms; - 3. Creating internal bio-safety committees; - 4. Defining which GE organisms should be regulated by the Secretariat of Health for the purpose of human health protection; - 5. Defining how bio-safety information is to be publicly disseminated through the National System of Bio-safety. The reglamentos will also clarify and define a number of procedures and expectations, such as: - 1. Specifics on inspection, surveillance activities, and security measures; - 2. Guidelines on how sanctions will be administered in the event that the law is broken; - 3. Requirements, time frames, and procedures for the appropriate ministries to use when issuing GE organisms permits and notifications; - 4. A framework for an appeals process for the relevant ministries. Despite the fact that many official and private sources expect that these regulations will be published in a matter of weeks or months, there is little indication from lower level policy makers that the publishing of the reglamentos is imminent. Because of legal ambiguities resulting from the lack of Bio-Safety Law implementing legislation, SAGARPA has delayed the authorization of permits for the experimental field trials of 18 biotechnology corn varieties. The head of Mexico's national food safety and food quality service (SENASICA) stated in August 2006 that SAGARPA would promptly implement the nation's Master Corn Plan, which would effectively give a green light for biotechnology corn field trials. However, SAGARPA then decided in October 2006 to temporarily block the field trial permits. This decision was justified by the citation of two legal obstacles: - 1. A provision in the Bio-safety Law requires that guidelines be established for protecting native corn species. Background material for establishing the guidelines were in place, but had not been compiled and published. At the time of the decision, SENASICA stated that SAGARPA would address this issue by dedicating more resources to completing the guidelines. These guidelines were published in the "Diario Oficial" on November 29, 2006 under the title, "Régime for Special Corn Protection for Experimental Liberation of Genetically Modified Corn." - 2. Mexico's Bio-safety law states that centers of origin for native corn species are off limits to biotech corn plantings. Biotechnology opponents have insisted that all Mexican territory be declared a center of origin. SENASICA, however, disagreed and promised completion (at the end of 2006), of a map of the country showing the boundaries of centers of origin. This map, however, has not been published. As a result of this delay industry sources have stated privately that it is entirely unclear when SAGARPA will approve experimental corn field trials. Moreover, most biotechnology industry representatives concur that the publication of the above-mentioned implementing regulations of the Bio-safety Law is necessary before the experimental field trials will be allowed. Many farmers and representatives from life science firms believe that Mexico's approach to biotechnology policy has been far too reactive to, and considerate of, a small, but very vocal, group of anti-biotechnology activists. They charge that in an attempt to appease all special interest groups, the government has failed to act decisively. As implementing regulations of the Bio-safety Law are still not published, details regarding the full implementation of the law, and whether or not there will be any adverse impact on U.S. agricultural exports, is not yet known. ### NON-APPROVED EVENTS AND ASYNCHRONOUS APPROVAL OF EVENTS In August of 2006, and again in March of 2007, the USDA issued announcements regarding the detection of a low-level presence of a non-approved biotechnology event in the U.S. rice supply. Both of the detected events were identified as members of the LLRICE 600 series, designed for herbicide tolerance. As these particular events had not been approved for human consumption in Mexico, nor the United States, at the times of the announcements, the Mexican Ministry of Health was compelled to act. These actions resulted in minor delays of U.S. rice shipments in the spring of 2007. However, the more significant longer term development resulting from the USDA announcements was that they forced Mexico and the United States to come to terms with the issue of asynchronous approval of biotechnology events in North America, and around the world. In August of 2006 USDA announced the low-level presence of a regulated line of genetically engineered rice, LLRICE 601, an event that was field tested in the United States between 1998 and 2001. The protein found in LLRICE 601 is used in a broad range of other products, and has been repeatedly and thoroughly scientifically reviewed and used safely in food and feed, cultivation, import and breeding in the United States, as well as nearly a dozen other countries around the world, including Mexico. As a result of this detection, the Mexican government began testing U.S. rice shipments for the presence of LLRICE 600 series events. Soon after the USDA announcement, the life science firm responsible for developing this particular event finalized its application to the Mexican Ministry of Health for approval of LLRICE 62, a closely related event to LL601. LLRICE 62 was granted approval for consumption in the United States in 1999. In March of 2007 the Mexican Ministry of Health issued a trade advisory for U.S. rice. As mentioned, the Ministry of Health and Ministry of Agriculture had been testing U.S. rice shipments for the presence of LLRICE 600 series events since the first USDA announcement the previous August. After a number of positive detections the GOM issued a release stating that all imported rice would henceforth require a certificate from an approved laboratory stating that the shipment contained no GE material. That month Mexican authorities stopped several shipments of rice at a number of border crossing points because of positive detections of GE material. In order to maintain the Mexican market for U.S. rice producers, FAS/Mexico worked with the Mexican Ministry of Health to expedite final approval of LLRICE 62. This approval was issued on March 28, 2007 when the Health Ministry added LLRICE 62 to its list of biotechnology-derived food products considered safe for human consumption. Since that time, no further interruptions to the U.S. rice supply have been registered. In a somewhat similar story, a different life science
company announced in the spring of 2007 plans to commercialize a new corn event, MIR604, under the trade name of "Agrisure". The event contains a modified Bt protein (insect resistant) to address the Western corn rootworm. Agrisure will be offered as a stacked event with Bt11, an herbicide tolerant event that is also resistant to the European corn borer. This announcement was met with a great deal of consternation by grain exporters because the developer of this event had not sought, at that time, approval for its acceptance in the in the vast majority of the U.S.'s major grain export markets. Thus, the inclusion of this grain in the U.S. grain supply could potentially jeopardize access to these markets. The developer of this event is being urged, strongly, by U.S. grain exporters and the USDA to apply for approval of this event in major grain export markets. The life science company responsible for commercializing this event has complied, and has submitted application for approval to Mexico's Health Ministry to regulate MIR604. Approval before the fall harvest is critical. #### ORGANICS LAW On February 7, 2006 the new Organic Products Law was published in the "Diario Oficial". This law establishes additional regulations for the use of biotechnology derived food products. There are three specific areas where this law regulates biotechnology-derived products: - 1. Provision 27 of the organics bill states that the use of all the materials, products, and ingredients or inputs that come from, or have been produced with, genetically modified organisms are prohibited in the entire productive chain of organic products; - 2. The law also prohibits the use of substances or forbidden materials referred to in provision 27 which alter the organic characteristics of the products; and - 3. The bill establishes that SAGARPA may impose a fine of as much \$700,000 pesos (roughly U.S. \$62,000) on a firm or individual that is found guilty of violating the law. Mexico's Bio-safety law does not require labeling for packaged foods and feeds. However, under this Bio-safety law, labeling is required of seeds (including corn) for planting (Provision 101). Labeling information should include the fact that the planting seeds are genetically modified, the characteristics of the acquired genetic combination, implications with regard to special conditions and growing requirements, and changes in reproductive and productive characteristics. #### CARTAGENA PROTOCOL In 2002 the Mexican Senate ratified the Cartagena Protocol on Bio-safety (CPB). This ratification helped to insure final congressional approval of the Bio-safety law in February 2005, as Mexico was obligated under the CPB to pass domestic legislation in order to harmonize its domestic laws with its international obligations. #### **Capacity Building and Outreach** A number of capacity building and outreach activities between the U.S., Mexico, and Canada, have taken place over the past year. The purpose of these activities has been to exchange information and experience, transfer appropriate technology and knowledge, and harmonize regulations. Mexico continues to harmonize its regulatory approach to agricultural biotechnology with its NAFTA partners through the North America Biotechnology Initiative (NABI). This body not only helps Mexico identify and address regulatory gaps, but also promotes a trilateral harmonized approach to agricultural biotechnology regulation. In May of 2007 the U.S. Grains Council sponsored a media education tour in the U.S. for a group of Mexican journalists. This tour gave the media representatives the opportunity to make first-hand observations about the use and acceptance of agricultural biotechnology through direct contact with U.S. growers, regulators, academics, researchers and industry. The program was successful in providing the journalists with science and fact-based information regarding biotechnology in order for them to communicate a balanced message back to their respective audiences. The primary focus of this tour was to demonstrate the role of biotechnology as a tool to help meet the increasing global demand for food, feed, and fuel. The tour began in Boston, Massachusetts where participants attended the 2007 Annual BIO International Convention. There, attendees were introduced to the latest in modern biotechnology and the breadth of its presence in today's society. Following the convention the participants visited farms, grower organizations, research facilities, seed companies and grain handling facilities in Illinois and Missouri. Reporters of influential newspapers and magazines such as Grupo Reforma, La Jornada, Vision Empresarial, Grupo Milenio and QUO, were part of the media tour. Looking forward, FAS/Mexico is currently working with the Mexican Congress to organize a U.S. biotechnology tour for a number of Mexican congressmen who are members of the Lower House agricultural committee. The tour, which is tentatively schedule for August 2007, will serve to demonstrate the comprehensive system of safeguards surrounding biotechnology in the U.S., and how greater yields and agricultural productivity can be realized through the adoption of agricultural biotechnology. ## **Marketing Issues** In general, Mexican consumers, producers, importers, and retailers continue to be disengaged from the biotechnology debate; with the latter opting to let industry trade associations do any significant lobbying which may be necessary. Moreover, Mexican consumers are more concerned with price and quality than the source of their food. Thus, concerns, both real and assumed, about the potential environmental impact of genetically modified foods continue to be a luxury of wealthy-country consumers. However, Mexicans do draw a distinction between biotechnology and genetically modified corn. Many, across the socio-economic spectrum, are concerned about the integrity of Mexico's native corn species. For Mexicans, corn is a symbol of their heritage, so acceptance of this technology may well be tied to protecting this native plant. According to a study by the Center for Comparative and International Studies, of the Swiss Federal Institute of Technology, the stakeholders in Mexico (i.e. producers, importers, retailers, scientists, etc.) generally expect agriculture to benefit from agricultural biotechnology and do not believe that the consumption of genetically engineered foods will have a serious impact on human health. In turn, they are very concerned about the potential impact of transgenic crops on Mexico's rich biodiversity and are afraid that biosafety guidelines will not be implemented properly. Also, the study reveals that amongst the actors involved in the public debate on agricultural biotechnology, academia is generally regarded as the most important and most trustworthy domestic stakeholder. Thus, intellectual leadership from academia is of crucial importance to bring supporters and opponents closer together on biotechnology issues. As part of the effort to address concerns about genetically engineered corn seeds in Mexico, on April 18, 2007, Monsanto Mexico signed an agreement with the National Confederation of Corn Producers (CNPAMM), which is affiliated with the umbrella agriculture association National Farmers Confederation, (CNC), probably the most important growers association in Mexico. With this agreement Monsanto will provide Mexican producers with GE seeds, as well as initiate activities to protect native corn, including the establishment of corn germplasm banks. As already mentioned, many environmental and indigenous groups oppose the introduction of GE plants, fearing they may contaminate native varieties of corn. CNPAMM officials estimated that more than 90 percent of small and medium growers would use GE seeds to improve productivity. Monsanto Mexico stated that the commercialization of GE maize could begin in 2010, once the evaluation phases required by the bio-safety law have been completed. # Appendix A Biotechnology Crops Approved for Human Consumption (1995-2005) | Name, Event
Identification and
Characteristic
Conferred | Receptor
Organism | Donor
Organisms | Introduced
Genes | Liberation
Date | |--|--|--|--|-----------------------| | Tomato (Lycopersicum esculentum) of
retarded maturation
Tomato Flavr Savr тм | Tomato
(Lycopersicum
esculentum) | (Lycopersicum
esculentum) | a) Gene of
Poligalacturonasa
In anti-sense, of
Tomatob) Gene of resistance | February 14, 1995 | | Potato (Solanum Tuberosum) resistant to the "catarinita" (Leptinotarsa decemlineata) | Potatoe
(Solanum
Tuberosum) | Bacillus
Thuringiensis
Subsp tenebrionis | to Kanamycin (Kan _r) a) Gene Cry IIIA of Bacillus Thuringiensis Subsp tenebrionis b) Gene ntpII (Neomycin phosphor- transfers type II) | March 20, 1996 | | Cotton (Gossypium hirsutum) resistant to Lepidopteron and Kanamycin insects Cotton Bollgard Identification OECD: MON- ØØ531-6 | (Gossypium
hirsutum) | Bacillus
Thuringiensis subsp
kurstaki | a) Gene Cry IA (C) de
bacillus
Thuringiensis subps
kurstaki
b) Gene ntpII
(Neomycin phosphor-
transfers Type II) | September 18,
1996 | | Canola (Brassica napus) tolerant to the
glyphosate herbicide
Canola Roundup ready ®
RT73 Canada/GT73 EU
Identification OECD: MON-ØØØ73-7 | Canola
(Brassica
Napus) | Agro bacterium sp.
Stock 4 | a) Gene 5 - enolpiruvilshikimato 3 - phosphate sintetasa of Agrobacterium sp. Stock 4 b) Gene de resistance to the kanamycin
(Kan,) | September 18,
1996 | | Soybean (Glycine max L) tolerant al
herbicide glyphosate
Soya Roundup ® or Faena ®
GTS 40-3-2
Identification OECD : MON-Ø4Ø32-6 | Soya (Glycine
Max L) | Agrobacterium
SP.
Stock 4 | a) Gene 5 - enolpiruvilshikimato 3 - phosphate sintetasa de Agrobacterium sp. Stock 4 b) Gene of tolerant to Kanamycin (Kan.) | September 18,
1996 | | Tomatoes (Lycopersicum esculentum)
of retarded maturation
B, Da, F | Tomatoes
(Lycopersicum
esculentum) | Lycopersicum
esculentum | a) Gene of Poligalacturonasa with reduced activity of tomato b) Gene ntpll (neomycin phosfo-transferasa type II) | September 18,
1996 | | Cotton (Gossypium hirsutum) resistant
to bromoxinil
Cotton BXN | Cotton
(Gossypium
hirsutum) | Klebisiella
ozaneae | a) Gene BXN of
klebisiella
ozaneae that codify
one
nitrilasa | September 28,
1996 | | Name, Event | | | | | |--|---|--|---|-----------------------| | Identification and
Characteristic
Conferred | Receptor
Organism | Donor
Organisms | Introduced
Genes | Liberation
Date | | Tomato (Lycopersicum esculentum) of
retarded maturation
Line 1345-4 | Tomato
(Lycopersicum
esculentum) | Tomato
Lycopersicum
esculentum | a) Fragment of gene
of the
Aminociclopropano
acid
Carboxilico sintetasa
(AccS), of Tomato | November 18, 1998 | | | | | b) Gene ntpll
(neomycin
fosfo-transferasa type
II) | | | Canola (Brassica napus) Ammonium
Gluphosinate herbicide tolerant
and kanamycin tolerant.
Variety MS1/RF1 o Topas 19/2 hybrid of
the lines
B91-4, B93-101, B94-1 y B94-2
HCN92
Identification OECD: ACS-BN ØØ4-7 | Canola
(Brassica
napus L.) | Streptomyces
viridochromogenees | a) Gene bar de phosphinotricine acetyl transfer of (PAT) Streptomyces viridochromogenees b) Gen ntpII (neomycin fosfotransferasa tipo II) | February 22, 1999 | | Cotton (Gossypium hirsutum L.)
tolerant to the Glyphosate herbicide
Cotton Roundup Ready ®
Lines 1445 y 1698
Identification OECD: MON-Ø1445-2 | Cotton
(Gossypium
hirsutum L.) | Agrobacterium sp
Stock CP4 | a) Gene EPSPS de
Agrobacterium sp.
Stock CP4 | July 17, 2000 | | Canola (Brassica napus L. oleifera)
Ammonium Gluphosinate herbicide
tolerant
Variety T45 (HCN28) | Canola
(Brassica napus L.
oleifera) | Streptomyces
Viridocromo genes | a) Gene of
phosphinotricine
acetiltranferasa
(pat) of
Streptomyces
Viridocromogenes | September 20,
2001 | | | | | b) Gene ntpll
(neomycin phosphor-
transfers type II) | | | Potato (Solanum Tuberosum) resistant
to Red beetle (Leptinofarsa
decemlineata) y al virus del
Potato leaf-roll virus (PLRV)
Papa New Leaf® Plus | Potato (Solanum
Tuberosum) | Bacillus
Thuringiensis
subsp.
Tenebrionis | a) Gene Cry 3A deB. ThuringiensisSubsp. Tenebrionis | September 26,
2001 | | RBMT 21-129, 21-350
RBMT 22-82
Identification OECD: NMK-89648-1
NMK-89185-6 | | Virus PLRV | b) Gene de la replicas
a del virus
PLRV | | | NMK-89896-6 | | | c) Gene ntpll
(neomycin phosphor-
transfers type II) | | | Potato (Solanum Tuberosum) resistant
al beetle
Colorado (Leptinofarsa decemlineata)
and potato virus (PVY)
Papa New Leaf ® Y | Potato (Solanum
Tuberosum | Bacillus
Thuringiensis
subsp.
Tenebrionis | a) Gene Cry 3A de
Bacillus
Thuringiensis Subsp.
Tenebrionis | September 26,
2001 | | RBMT 15-101
SEMT 15-02,SEMT 15-15
Identification OECD: NMK-89653-6
NMK-89935-9
NMK-89930-4 | | Virus PVY | b) Gene of the
Protein of the
Capside of virus
PVY | | | | | | c) Gene ntpII
(Neomycin phosphor-
Transfers type II) | | | Cotton (Gossypium hirsutum) Resistant
to insects
Lepidopteron and tolerant to herbicide
glyphosate | Cotton
(Gossypium
Hirsutum) | Bacillus
Thuringiensis subsp
Kurstaki HD-73 | a) Gene Cry 1Ac de
Bacillus
Thuringiensis subsp
Kurstaki HD-73 | April 30, 2002 | | Cotton Bollgard/Roundup Ready®
Identification OECD:
MON- Ø Ø531-6 X MON- Ø 1445-2 | | Agrobacterium sp
Stock CP4 | b) Gene cp4 epsps
of Agrobacterium
sp. Stock CP4 | | | Name, Event | | | | | |---|-----------------------------------|---|---|-----------------------| | Identification and Characteristic Conferred | Receptor
Organism | Donor
Organisms | Introduced
Genes | Liberation
Date | | Maize (Zea mays L.) tolerant al
herbicide glyphosate
Line GA21
Maize Roundup Ready® | Maize (Zea
mays L) | Maize (Zea
mays L) | Gene EPSPS de maize | May 24, 2002 | | Identification OECD: MON-ØØØ21-9 Maize (Zea mays L.) tolerant to herbicide glyphosate Line NK 603 Maize Roundup Ready® Identification OECD: MON-ØØ6Ø3-6 | Maize (Zea
mays L) | Agrobacterium sp
Stock CP4 | a) Gene CP\$ EPSPS y CP4 EPSPS L2114P of Agrobacterium sp Stock CP4 | June 7, 2002 | | Maize (Zea mays L.) resistant a insects lepidopterist,
Line MON810
Maize Yieldgard®
Identification OECD: MON-Ø81Ø-6 | Maize (Zea
mays L) | Bacillus
Thuringiensis subsp
Kurstaki | a) Gene CryIA (b) de
Bacillus
Thuringiensis subsp
Kurstaki | November 6, 2002 | | Cotton (Gossypium hirsutum) Resistant
a lepidopterist,
Cotton Bollgard II, line 15985
Identification OECD: MON-15985-7 | Cotton
(Gossypium
hirsutum) | Bacillus
Thuringiensis subsp
Kurstaki | a) Gene Cry 1Ac de
Bacillus
Thuringiensis subsp
Kurstaki | September 15,
2003 | | | | | b) Gene Cry 2Ab de
Bacillus
Thuringiensis | | | | | | c) Gene GUS (ß-D-
glucoronidasa) | | | | | | d) Gene ntpll
(neomycin phosphor-
transfers type II) | | | | | | e) Gene uidA | | | Maize (Zea mays L.) resistant to
lepidopterist insects and
Tolerant to ammonium gluphosinate
herbicide, line Bt Cry
1F 1507 | Maize (Zea
mays L) | Bacillus
Thuringiensis var.
Oizawai stock PS
811 | a) Gene Cry 1F de
Bacillus
Thuringiensis var.
Oizawai stock PS
811 | September 15,
2003 | | Identification OECD : DAS-Ø15Ø7-1 | | streptomyces
viridochromogenees | b) Gene PAT
(phosphinotricine
acetyl
transfers) of
streptomyces
viridochromogenees | | | Maize (Zea mays L.) resistant to coleopteron insects, and to Kanamycin Event MON 863 Identification OECD: MON-ØØ863-5 | Maize (Zea
mays L) | Bacillus
Thuringiensis
Subsp. kumatoensis | a) Gene Cry 3B (b) 1
de
Bacillus
Thuringiensis
Subsp. Kumatoensis | October 7, 2003 | | | | | b) Gene ntpll
(neomycin phosphor-
transfers type II) | | | Soybean (Glycine Max L.) resistant to
ammonium gluphosinate
Event A2704-12 y A 5547-127
Identification OECD: ACS-GMØØ5-3 X
ACS-GMØØ6-4 | Soybean (Glycine
Max L.) | Streptomyces
viridochromogenees
stock T ü 494 | a) Gene pat de S.
viridochromogenees
Stock T ü 494 | August 13, 2003 | | Maize (Zea mays L.) resistant to
insects, lepidopterist, line
MON810 and Maize "Faena" solution,
tolerant to Glyphosate herbicide line NK | Maize (Zea
mays L) | Bacillus
Thuringiensis subsp
Kurstaki. | a) Gene Cry 1Ab de
Bacyllus
Thuringiensis subsp
Kurstaki. | March 3, 2004 | | 603
Event NK603 x MON810
Identification OECD: MON-ØØ603-6 X
MON- ØØ81Ø -6 | | Agrobacterium sp
Stock 4 | b) Protein CP4EPSPS
of
Agrobacterium sp | | | Receptor
Organism Cotton
(Gossypium
hirsutum) Cotton
(Gossypium
hirsutum) | Donor
Organisms Bacillus Thuringiensis var. Aizawai Streptomyces viridochromogenees Bacillus | a) Gene Cry1F de Bacillus Thuringiensis var. Aizawai b) Gene pat of Streptomyces | Liberation
Date
June 1, 2004 | |--|--|--
--| | (Gossypium
hirsutum)
Cotton
(Gossypium | Thuringiensis var. Aizawai Streptomyces viridochromogenees Bacillus | Bacillus Thuringiensis var. Aizawai b) Gene pat of Streptomyces | June 1, 2004 | | (Gossypium | | viridochromogenees | | | | Thuringiensis var.
Kurstaki stock HD-
73
Streptomyces
viridochromogenees | a) Gene Cry 1Ac de
Bacillus
Thuringiensis var.
Kurstaki
b) Gene pat of
Streptomyces | August 19, 2004 | | Cotton
(Gossypium
hirsutum) | Bacillus
Thuringiensis var.
Kurstaki
Bacillus
Thuringiensis var.
Aizawai
Streptomyces
viridochromogenes | a) Gene Cry 1Ac of Bacillus Thuringiensis var. Kurstaki b) Ben Cry1F of Bacillus Thuringiensis var. Aizawai c) Gene pat of Streptomyces viridochromogenees | September 7, 2004 | | Canola
(Brassica
napus L.) | Bacillus
Amyloliquefaciens
Streptomyces
hygroscopicus | a) Gene barnasa
barstar of bacillus
Amyloliquefaciens
b) Gene bar of
Streptomyces | October 21, 2004 | | Maize (Zea mays
L) | a) Bacillus thuringiensis Stock PS149B1 b) Bacillus thuringiensis Stock PS149B1 c) Streptomyces | a) Gene Cry35Ab1 b) Gene Cry35Ab1 c) Gene pat | December 06, 2004 | | Maize (Zea mays
L) | a) Bacillus
thuringiensis subsp
kumamotoensis
b) Agrobacterium
sp. Stock CP4 | a) Gene Cry3Bb1 b) Gene cp4 epsps | December 10, 2004 | | Maize (Zea
mays L) | a) Bacillus
thuringiensis var.
oizawai stock PS
811
b) Streptomyces
Viridochromogenees
c) Agrobacterium
sp. Stock CP4 | a) Gene Cry 1F of Cacillus thuringiensis var. oizawai stock PS 811 b) Gene PAT (phosphinotricine acetyl transferasa) of Streptomyces Viridochromogenees | December 13, 2004 | | | Canola (Brassica napus L.) Maize (Zea mays L) Maize (Zea mays L) | Cotton (Gossypium hirsutum) Canola (Brassica napus L.) Maize (Zea mays L) Agrobacterium Bacillus thuringiensis var. oizawai stock PS 811 b) Streptomyces Viridochromogenees C) Agrobacterium | Cotton (Gossypium hirsutum) Bacillus Thuringiensis var. Aizawai Canola (Brassica napus L.) Maize (Zea mays L) m | | Name, Event | | | | | |---|-----------------------------------|---|---|-------------------| | Identification and | Receptor | Donor | Introduced | Liberation | | Characteristic | Organism | Organisms | Genes | Date | | Conferred | or garnern | or garnonno | 331.33 | Date | | Alfalfa (Medicago sativa L) tolerant to | Alfalfa (Medicago | Agrobacterium | Gene cp4 epsps | January 31, 2005 | | Glyphosate herbicide.
Events J101 y J163. | sativa L.) | sp. Stock CP4 | | | | Cotton resistant to insects and tolerant
to the herbicide
Glufosinato of Ammonium and tolerant
to the herbicide Glifosato | Cotton
(Gossypium
hirsutum) | a) Bacillus
Thuringiensis var.
Kurstaki | a) Gene Cry1Ac of
Bacillus
Thuringiensis var.
Kurstaki | February 28, 2005 | | Arisen of the conventional crossing of
the event Cry 1Ac
Event 3006-210-23 x event 281-24-
236/Cry1F and the one
Event MON 1445-2 | | b) Bacillus
Thuringiensis var.
Aizawai | b)Gen Cry1F of
Bacillus
Thuringiensis var.
Aizawai | | | Badge OECD:
DAS-21Ø23-5 X DAS-24236-5 X MON-
1445-2 | | c) Streptomyces
viridochromogenes | | | | 7.1.0 2 | | d) Agrobacterium
sp. Stump CP4 | c) Gene Pat of
Streptomyces
Viridochromogenes | | | | | | d) Gene EPSPS of
Agrobacterium sp.
Stump CP4 | | | Cotton resistent to Gliphosate event
MON-88913
Badge OECD: MON-88913-8 | Cotton
(Gossypium
hirsutum) | Agrobacterium sp.
Strain CP4 | Gen cp4 epsps | February 15, 2006 | | Cotton resistent to Gliphosate event
MON-88913 X Cotton (Gossypium
hirsutum) | Cotton
(Gossypium
hirsutum) | a) Agrobacterium
sp.
Strain CP4 | a) Gen cp4 epsps | February 17, 2006 | | Resistent to lepidopters, Bollgard
Cotton II, line 15985
Badge OECD: MON 88913-8 X MON-
15985-7 | ŕ | b) Bacillus
Thuringiensis
subsp.
kurstaki | b) Gen Cry 1Ac de
Bacillus thuringiensis
subsp. kurstaki | | | | | Karstaki | c) Gen Cry 2Ab de
Bacillus thuringiensis | | | Maize resistant to gliphosate and
Resistent to the rootworm, event MON
88017
Badge OECD: MON-88Ø17-3 | Maize (Zea mays
L.) | a) Bacillus
thuringiensis
(subsp.
Kumamotoensis) | a)Gen cry3Bb1 | March 28, 2006 | | · · | | b) Agrobacterium
sp.
Strain CP4 | b)Gen cp4 epsps | | | Maize resistant to glyphosate, resistent to the rootworm and lepidopters, event | Maize (Zea mays
L.) | a)Bacillus
thuringiensis) | a)Gen cry3Bb1 | April 6, 2006 | | MON 88017 x
MON 810
Badge OECD: MON-88Ø17-3 x MON- | | b) Agrobacterium
sp.
Strain CP4 | b) Gen cp4 epsps | | | ØØ81Ø-6 | | c)Bacillus
thuringiensis subsp
kurstaki | c) Gen CrylA(b) de
bacillus thuringiensis
subsp. kurstaki | | | Cotton resistant to lepidopter insects
and tolerant to the herbicide
Gluphosinate of Ammonium and
tolerant to the herbicide Gliphosate | Cotton
(Gossypium
hirsutum) | a)Bacillus
Thuringiensis var.
Kurstaki | a) Gen cry1Ac de
Bacillus
thuringiensis var.
kurstaki | April 24, 2006 | | ; Arisen of the conventional crossing of
the event Cry1Ac event
3006-210-23 x event 281-24-
236/Cry1F x | | b) Bacillus
Thuringiensis var.
Aizawai | b) Gen cry1F de
Bacillus | | | MON 88913.
Badge OECD:
DAS-21Ø23-5 x DAS-24236-5 x MON- | | c)streptomyces
viridochromogenes | thuringiensis var.
aizawai | | | 88913 | | d)Agrobacterium
sp.
Strain CP4 | c) Gen pat de
Streptomyces
Viridochromogenes | | | | | | d) Gen cp4 epsps | | | Name, Event Identification and Characteristic Conferred | Receptor
Organism | Donor
Organisms | Introduced
Genes | Liberation
Date | |---|---|--|---|--------------------| | Sugar beet resistant to Gliphosate,
event H7-1
Badge OECD: KM-00071-4 | Sugar beet (Beta
Vulgaris L. ssp
Vulgaris var.
Altisima) | Agrobacterium sp
Strain CP4 | Gen cp4 epsps | May 19, 2006 | | Maize (Zea mays L.) with combined genes. Maize (Zea mays L.) resistent to Insects and lepidopters and resistant to Gluphosinate Ammonium and Gliphosate, event DAS 1507 X Maize (Zea mays L.) resistent to Diabrotica virgifera, Diabrotica | Maize (Zea mays
L.) | a Bacillus
Thuringiensis var.
Oizawai strain PS
811
b)Streptomyces | a)Gen cry 1F de
bacillus
thuringiensis var.
oizawai
strain PS 811 | May 26, 2006 | | berberi y Diabrotica virgifera zeae;
event
DAS-59122-7 | | viridochromogenes c)Bacillus | b) Gen PAT
(fosfinotricina
acetil transferasa) de | | | Badge OECD: DAS-Ø15Ø7-1 X DAS-
59122-7 | | thuringiensis strain
PS149B1 | Streptomyces
Viridochromogenes | | | | | d)Bacillus
thuringiensis strain
PS149B1 | c) Gen cry34Ab1
d) Gen cry35Ab1 | | | | | e)Streptomyces
viridochromogenes | e) Gen pat | | **Appendix B** # Mexico's Approved Field Testing Events of Biotechnology Crops (1988-2003) Analysis of the Testing of Transgenics Products, carried out in Mexico from 1988 to 2003. | Period | 1988/2001 | 2002 | 2003 | |---|----------------|-------------|------------| |
Number of Approved Applications | 201 | 34 | 12 | | Total of Hectares of the registered testing (1) | 214,311.172 | 118,066.734 | 32,500 | | Average of Hectares of the registered testing (2) | 1,071.556 | 3,472.551 | 4,517.978 | | Maximum of Hectares in a single registration | 39,549.000 | 20,000.000 | 20,000.000 | | Minimum of Hectares in a single registration | 18 corn plants | 0.100 | 1.000 | | Approved products | | | | |-------------------------|-------------|-------------|--------| | Period | 1988/2001 | 2002 | 2003 | | Alfalfa | S/D | N/R | N/R | | Cotton | 198,823.364 | 102,205.194 | 25,000 | | Arabidopsis Laboratory | S/D | N/R | N/R | | Rice | S/D | N/R | N/R | | Bt modified genetically | S/D | N/R | N/R | | Zucchini | 79.250 | 12.540 | N/R | | Canola | 4.044 | N/R | N/R | | Knapweed | 10.000 | N/R | N/R | | Chili | 0.100 | N/R | N/R | | Carnation | 0.500 | N/R | N/R | | Lemon | S/D | N/R | N/R | | Linen | 0.020 | N/R | N/R | | Corn | 5.068 | N/R | N/R | | Cantaloupe | 14.700 | N/R | N/R | | Micro-organisms | 0.500 | N/R | N/R | | Potato | 5.500 | N/R | N/R | | Papaya | 1.250 | N/R | N/R | | Pineapple | 0.038 | N/R | N/R | | Banana | 0.814 | N/R | N/R | | Rhizobium etli | 0.500 | N/R | N/R | | Soybean | 15,339.420 | 15,840.000 | 7,500 | | Tobacco | 2.000 | 9.000 | N/R | | Tomato | 24.104 | N/R | N/R | | Wheat | S/D | N/R | N/R | | Developers | | | | |---------------------------|-------------|-------------|--------| | Period | 1988/2001 | 2002 | 2003 | | Agritope | S/D | N/R | N/R | | Asgrow | 2.453 | N/R | N/R | | Aventis | 2,160.300 | 200.294 | N/R | | Bayer | S/D | N/R | 1.236 | | Calgary | 2.064 | N/R | N/R | | Calgene | 6.500 | N/R | N/R | | Campel/Sinalopasta | S/D | N/R | N/R | | CEFINI/UNAM | S/D | N/R | N/R | | Ciba Geigy | 0.500 | N/R | N/R | | CIICA | 1.538 | N/R | N/R | | CIMMIYT | 0.133 | N/R | N/R | | CINVESTAV | 4.568 | N/R | N/R | | DNA PlantTecnologies | 20.700 | N/R | N/R | | US Embassy | 0.100 | N/R | N/R | | Florigene Europe | 0.500 | N/R | N/R | | Harris Lives | 1.200 | N/R | N/R | | Pioneer Hybrids | 58.540 | 15.000 | N/R | | INIFAP | 0.264 | 0.400 | N/R | | ISK Biosciences | S/D | N/R | N/R | | Malvinas | 35.000 | N/R | N/R | | Monsanto | 211,905.950 | 117,829.500 | 32,500 | | Mycogen Mexicana | S/D | N/R | N/R | | Peto Seeds | 0.240 | N/R | N/R | | Rhone Poulenc | 3.510 | N/R | N/R | | Hybrid seeds | S/D | N/R | N/R | | Seminis Vegetable Seeds | 5.810 | 12.540 | N/R | | SVS Mexicana | 87.000 | N/R | N/R | | Trechas Agriculture CORP. | 0.500 | N/R | N/R | | UNAM | 0.500 | N/R | N/R | | U.A. Of Aguascalientes | S/D | N/R | N/R | | Upjhon | S/D | N/R | N/R | | V.Y. Mexico INC of R.L. | 2.000 | 9.000 | N/R | | Zenaca | S/D | N/R | N/R | Before January 1, 2001, there are 42 applications without the indication of the area Adjusted without taking into account the non-declared S/D without information on number of hectares N/R didn't apply in that period Source: General Directorate of Plant Health SENASICA-SAGARPA http://www.sagarpa.gob.mx/senasica ## Mexico's Approved Field Testing Events of Biotechnology Crops (1988-Oct. 2005) | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |---------------------------|------------------------|--|-------------------------------------|-----------------------|-------------------| | CAMPBELLS,
SINALOPASTA | Tomato | Bacillus thuringiensis expression resistance against lepidopteron. | Guasave, Sinaloa. | 09/09/1991 | 12/Feb. /
1992 | | CAMPBELLS,
SINALOPASTA | Tomato | Suppression of polygalacturonase | Guasave, Sinaloa. | 1988 | 1988 | | CAMPBELLS,
SINALOPASTA | Tomato | Suppression of polygalacturonase | Guasave, Sinaloa. | 09/09/1991 | 12/feb/1992 | | CALGENE | Tomato
2.5 have. | FLAVR SAVR TM, delaying of the maturation | gNavolato, Sinaloa | 10/07/1992 | 21/sep/1992 | | CINVESTAV | Potato
100 | Resistance to virus PVX v PVY, marker NPTII | Irapuato, Gto. | | 30/sep/1992 | | CINVESTAV | Tomato
0.0368 have. | B.T. expression, markers KHAN, NPTII, | • | | 18/mar/1993 | | UPJOHN ASGROW | Pumpkin | Resistance to VMP, VMAP, VMS2 AND VMAZ. | . 3 . | | 10/may/1993 | | CINVESTAV | Corn
18 plants | Gene BAR of Streptomyces
hygroscopicus and to Gene
of Escherichia coli. | | 10/03/1993 | April-1993 | | CALGENE | Tomato | FLAVR SAVR TM, delaying of the maturation | - | | - | | CALGENE | Tomato | FLAVR SAVR TM, delaying of the maturation | | | - | | CIBA-GEIGV | Tobacco | Resistance to the Mold
Blue | Ver. | | | | PETOSEED
MEXICAN | Tomato | Anti-sensibility and sensibility to polygalacturonase | San Quintín, BC. | 19/03/1994 | 15/sep/94 | | CIMMYT | Wheat | Varieties elite transformed with Gene marker (GU) | d He Beats, Edo. of
Mexico | 18/03/1994 | 03/may/1994 | | CIMMYT | Corn | Tropical lines transformed,
Gene marker (GU) | | 18103/1994 | 03/may/1994 | | CIMMYT | Corn | Putative transgenic callus of tropical corn | s He Beats, Edo. of
Mexico | 18/0311994 | 03/may/1994 | | CALGENE | Tomato | FLA VR INC VR
(pCGN1436) | Culiacán, Sinaloa. | 01/09/1994 | 11/nov/1994 | | CALGENE | Tomato | FLAVR SAVR (pCGN41 09) | Culiacán, Sinaloa, | 07/10/1994 | 11/nov/1994 | | CINVESTAV | Potato
1 have. | Resistance to virus X and
And of the potato, and
reporter Gene NPTII | d Irapuato, Gto. | 11/08/1994 | 11/nov/1994 | | AGRITOPE | Tomato | Gene of Escherichia coli, codes to SAMasa, to slow maturation | Vizcaino, BC. | 29/12/1994 | 05/apr/1995 | | СІММҮТ | Corn | Gene Cry IA (b) AND Gene
Cry TO (b) coming of
Bacillus thuringiensis, for
resistance to lepidopteron | He Beats, Edo. of
Mexico | 09/01/1995 | 08/feb/1995 | | CINVESTAV | Ruffle | Gene sucrose-phosphate syntasa (SPS), reporter Gene uidA (B - glucuronidase) and marker Gene hph of E. coli ace well ace regions regulatory of the gene (SPS), and of the Gene Ubiquitin | r
Irapuato, Gto. | 16/03/1995 | 05/apr/1995 | | CINVESTAV | Tobacco | Genes of the marbled virus of the Tobacco | S Irapuato, Gto. | 20/06/1995 | 13/jul/1995 | | MALVINAS | Cotton
35 have | Gene of Bacillus
hunngiensis var. Kurstaki,
for resistance to
lepidopteron | ,Altamira, Aldama,
Tamps. | 04/07/1995 | 09/aug/1995 | | AGRITOPE | Tomato | Gene SAM-handle of
coliphages T3 for to
increase shelf life | Guerrero, BC. and
Vizcaíno, BCS. | 12/09/1995 | 04/dec/1995 | | CIMMYT | Corn
0.0180 have. | Gene cryIA(b) for the resistance to Diatraea spp. and Spodoptera frugiperda | | 25/11/1995 | 08/feb/1996 | | INSTITUTION | CROP | GENETIC | LOCATION OF | APPLICATIO | | |-------------------------------|--|---|---|--------------------------|-------------| | | 00. | CHARACTERISTIC | EXPERIMENT | N DATES | DATE | | HYBRID SEEDS
INC DE C.v. | Soybean | Gene Roundup Ready,
confers resistance to
herbicide glyphosate. | Autlan, Jalisco. | 15/11/1995
05/01/1996 | 08/feb/1996 | | PIONEER OF
MEXICO | Soybean
1.2 have. | Plasmid PVGMGT04
of Escherichia coli, for
tolerance to herbicide
glyphosate | San José of the
Valley,
Nay. | 10/10/1995 | 04/dec/1995 | | MEXICAN ASGROW
INC DE C.V. | Zucchini | Gene of the protein
capsule, for the resistance
to
VMP,VMS and VMA of
Zucchini | The Peace, BCS. | 11/09/1995 | 04/dec/1995 | | MEXICAN ASGROW
INC DE C.V. | Corn
0.1 have. | Gene B73 and PAT that grant resistance to herbicides fromglufosinate | The Mochis,
Sinaloa. | 23/01/1996 | 24/apr/1996 | | MEXICAN ASGROW
INC DE C.V. | Corn
0.1 have. | Gene of Bt that grants resistance to insects lepidopteron | The M ochis,
Sinaloa. | 24/01/1996 | 24/apr/1996 | | MONSANTO | Jitomate | Gene of Bt, for resistance
to the attack of larvae of
lepidopteron | The Cruz of Elota,
Sinaloa. | | | | MONSANTO | Cotton | Gene of Bt. for resistance to larvae of lepidopteron | Matamoros, Coah. | 25/01/1996 | 08/may/1996 | | CINVESTAV | Pope
0.25 have. | to larvae of lepidopteron Tubers obtained transgenics in resistant field to PVX AND PVY | Arandas, Jal. | | 09/aug/1995 | | СІММҮТ | Wheat | Gene DHRF | Texcoco, Edo.de
Mexico | 09/0211996 | 10/apr/1996 | | CIBA-GEIGY
MEXICAN | Microorganisms.
0.5 have. | Modified based on Bt | Atotonilquillo, Jal. | 12/03/1996 | 10/apr/1996 | | СІММҮТ | Corn | Gene CryIA(b) resistant to tropical insects | Tlaltizapan, Mor. | 03/04/1996 | 07/jun/1996 | | MONSANTO | Cotton
10,000 have.
author
400 have. real | Pilot Programs with cotton
Bt | Tamps. | 02/04/1996 | 21/jun/1996 | | HARRIS LIVES OF
MEXICO | Melon
0.5 have. | Resistance to the virus of
mosaic of the cucumber
(CMV) | | 14/05/1996 | 07/jun/1996 | | MALVINA | Cotton | Gene coming from Bt
var. Kurstaki for control of
lepidopteron | · | | 27/jun/1996 | | AGRITOPE | Jitomate | Gene pAG 172 that grants
bigger life of shelf | Cabbage. Guerrero,
BC.
And Vizcaíno, BCS. | 20/06/1996 | 04/jul/1996 | | CEFINI-UNAM | Alfalfa | Genes markers coming
from
Escherichia coli or
Streptomices | Texcoco, Edo.de
Mexico | 01/07/1996 | 18/jul/1996 | | CALGENE | Laurate canola
of colza
4 have. | Gene YOU of the laurate
Californian that codes the
enzyme tiosterasa 12:0 -
ACP | | 13/08/1996 | 13/sep/1996 | | PIONEER | Soybean
1.86 have. | Gene PV-GMGT04 of
Plasmid of Escherichia col
that 10 they make
resistant to glyphosate | San José of the
Valley,
Nay. | Without dates | 13/sep/1996 | | PIONEER | Corn
0.26 have. | Gene cryIA(b) that grants resistance to European screwworm Lines pJR16S and
pJR16A with to Gene of poligalacturonasa that grants bigger life of shelf | San José of the
Valley,
Nay. | | 13/sep/1996 | | ZENECA | Tomato | | San Juan of Below,
Nay. | 10/06/1996 | 13/sep/1996 | | MONSANTO | Soybean
0.26 have. | Two Genes of EPSPS that
they confer tolerance to
the herbicide glyphosate | San Juan of Below,
Nay. | 15/08/1996 | 13/sep/1996 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |-----------------------------------|--|--|---|-----------------------|------------------| | MONSANTO | Cotton | Two Genes EPSPS and the
Gene nptll that they grant
resistance to herbicide
glyphosate | | 15/08/1996 | 13/sep/1996 | | CINVESTAV | Pope
2.25 have. | Tubers transgenics
resistant to VPX and VPY | Celaya, Gto.
, Saltillo, Coah.
Navojoa, Sinaloa. | 09/09/1996 | 01/nov/1996 | | DNA PLANT | Tomato | Gene CAC slows the maturation of the fruit | Fence of the Yaqui,
Sonora. and
Culiacán,
Sinaloa. | 08/10/1996 | 31/oct/1996 | | CIMMYT | Corn
0.0092 have. | Gene of Bt cryIA(b);
cryIA(c); cryIB and cryAC
that grants resistance to
lepidopteron | | 23/10/1996 | 22/nov/1996 | | CIMMYT | Corn
0.032 have. | Gene cryIA(b) that grants
resistance to lepidopteron
under conditions of
drought | Tlaltizapan, Mor. | 01/11/1996 | 22/nov/1996 | | CIMMYT | Corn
0.0075 have. | Gene cryIA(b) and bar that
grants resistance to
lepidopteron and
herbicides | t
Tlaltizapan, Mor. | 01/11/1996 | 22/nov/1996 | | SEMINIS
VEGETABLE SEEDS | Tomato
0.06 have. | Gene that grants
resistance to the virus of
mosaic of the cucumber | San Quintín, BC. | 23/10/1996 | 22/nov/1996 | | SEMINIS
VEGETABLE SEEDS | Tomato
0.12 have. | Gene that slows the
maturation of the fruit
to give bigger life of shelf | San Quintín, BC. | 23/10/1996 | 22/nov/1996 | | MONSANTO | Cotton
0.3 have. | Gene of Bt that grants resistance to lepidopteron | Cd. Obregón,
Sonora.
and Mexicali, BC. | 15/11/1996 | 17/12/96 | | MYCOGEN
MEXICAN INC DE
C.V. | | Gene of Bt that grants resistance to insects | Cd. Obregón,
Sonora. | 12/11/1996 | 31/jan/1997 | | MONSANTO | Cotton | Pilot program Boligard | Fence of the Yaqui
and
Fence of the May,
Sonora. | | 31/jan/1997 | | ISK BIOSC. | | Protein glasses of ace amended Bt | Celaya, Gto. | 08/11/1996 | 06/dec/1996 | | SEMINIS
VEGETABLE SEEDS | Pumpkin | | Villagran, Gto.; The
Strong one,
Sinaloa.;
Apodaca, N.L. | | 06/may/1997 | | MONSANTO | Cotton
2,500 have.
authorized.
1,142 have. real | Pilot program Boligard | Caborca, Sonora.
and
area of Sonoita,
Sonora. | 20/01/1997 | 31/jan/1997 | | MONSANTO | Cotton
4,000 have.
authorized
3,514.8 have.
real | Pilot program Boligard | District Lagunera
and Turret, Coah. | 20/01/1997 | 31/jan/1997 | | MONSANTO | Cotton
3.5 have. | Gene Roundup Ready that
grants resistance to
herbicides | Cd. Obregón and
Caborca, Sonora.
Mexicali, Valley of
Juárez and BC.
Matamoros and
Tampico, Tamps.
Turret, Coah. | 16/12/1996 | 31/jan/1997 | | MONSANTO | | Gene Boligard that grants resistance to lepidopteron | Turret, Coah.
Tampico, Tamps. | 04/0211997 | 13/mar/1997 | | DNA PLANT
TECNOLOGY | Tomato
1 have. | Gene that slows the maturation of the fruit | San Quintín, BC.
All Santos;
Culiacán, Sinaloa.
Sayula, Jal. | 05/02/1997 | 04/apr/1997 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |--|--|---|--|-----------------------|------------------| | DNA PLANT
TECNOLOGY | Tomato
0.1 have. | Gene that slows the maturation of the fruit | San Quintín; All
Santos; Culiacán;
Sayula | 05/02/1997 | 04/apr/1997 | | MONSANTO | Cotton
8,500 have.
authorized
8,335 have. real | Pilot Programs with cotton Boligard | South of Tamps.,
Cd.
Fence and Ebony,
S.L.P., Panuco,
Ver. | 10/02/1997 | 19/may/1997 | | TRECHAS
AGRICULTURE,
INC DE C.V. | Papaya
0.5 have. | Gene that make resistant to the virus of the ring stains | t Tapachula,
Chiapas. | 26/02/1997 | 16/may/1997 | | DNA PLANT
TECNOLOGY | Chilly
0.1 have. | Gene that slows the maturation of the fruit | Culiacán, Sinaloa.
Sayula, Jal. San
Quintín, B.C. | 10/03/1997 | 16/may/1997 | | MONSANTO | Soybean
1,000 have.
authorized
100 have. real | Pilot programs with Gene
Roundup Ready that grants
resistance to herbicides | | 11/03/1997 | 16/may/1997 | | MONSANTO | Cotton
4 have. | Log combination Genes
Boligard and Roundup
Ready with resistance to
lepidopteron and
herbicides | Culiacán, Sinaloa.
Caborca and Cd.
Obregón, Sinaloa.
Mexicali, BC.
Turret, Coah.
Matamoros and
Tampico, Tamps.
Valley of Juárez | 22/04//1997 | 18/jul/1997 | | MONSANTO | Soybean
1 have. | Gene Roundup Ready that
grants resistance to
herbicides Gene CryIA(b) | Altamira, Tamps. | 30/04/1997 | 18/jul/1997 | | MONSANTO | Corn
0.25 have. | that grants resistance to lepidopteron | The Mochis,
Sinaloa. | 06/05/1997 | 18/jul/1997 | | SEMINIS
VEGETABLE SEEDS | Pumpkin
32.5 have. | Line resistant ZW20 to virus | San Quintín, BC.
and
The Peace, BCS. | 07/05/1997 | 18/jul/1997 | | SEMINIS
VEGETABLE SEEDS | Pumpkin
32.5 have. | Line resistant CZW3 to virus | San Quintín, BC.
and
The Peace, BCS. | 07/05/1997 | 18/jul/1997 | | СІММҮТ | Corn
0.0195 have. | Gene cryIA(b) that provides resistance to lepidopteron | Tlaltizapan, Mor. | 08/05/1997 | 19/jun/1997 | | SEMINIS
VEGETABLE SEEDS | Melon
60.5 have. | Line CZW30 resistant to virus | San Quintín, B.C.
and
The Peace, BCS. | 08/05/1997 | 18/jul/1997 | | ASGROW | Corn
0.035 have. | Gene that provides resistance to insects | The Mochis,
Sinaloa. | 14/05/1997 | 18/jul/1997 | | ASGROW | Corn
1 have. | Gene that provides resistance to insects | San Juan of Below,
Nay. | 14/05/1997 | 18/jul/1997 | | ASGROW | Corn
0.1 have. | Gene that provides resistance to insects | The Mochis,
Sinaloa. | 14/05/1997 | 18/jul/1997 | | ASGROW | Corn
0.1 have. | Gene that provides resistance to insects | San Juan of Below,
Nay. | 14/05/1997 | 18/jul/1997 | | MONSANTO | Corn
0.25 have. | Gene that grants resistance to the herbicide glyphosate | The Mochis,
Sinaloa. | 06/05/1997 | 18/jul/1997 | | MONSANTO | Cotton
4,000 have.
authorized
1,236 have. real | cotton Boligard | Fence of the Yaqui
and of the one
May, Sonora. | 07/10/1997 | 01/dec/1997 | | MONSANTO | Cotton
6,000 have.
authorized.
2,259 have. real | Pilot Programs
cotton Boligard | Culiacán, Guasave,
Guamúchil and The
Strong one,
Sinaloa. | 18/08/1997 | 19/sep/1997 | | BREASTPLATE SEEC | Zucchini
0.24 have. | Gene that grants resistance to virus | Villagran, Gto. The
Strong one,
Sinaloa.
Apodaca, N.L. | 17/06/1997 | 28/jul/1997 | | MONSANTO | Corn
0.1 have. | Gene Boligard that grants resistance to lepidopteron | The Mochis, | 12/08/1997 | 04/sep/1997 | | СІММҮТ | Wheat | Gene Pat that grants tolerance to the herbicide glufosinato | He Beats, Edo. of
Mexico | 04/08/1997 | 04/sep/1997 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |----------------------------|--|---|---------------------------------------|-----------------------|------------------| | | Tomato
0.6 have. | Gene of Bt that provides resistance to the pin worm | Culiacán, Sinaloa. | 18/08/1997 | 04/sep/1997 | | HYBRID PIONEER | Soybean
5 have. | Gene Enough that grants resistance to the herbicide glufosinato | e Valley,
Nay. | 19/08/1997 | 19/sep/1997 | | HYBRID PIONEER | Soybean
7.5 have. | Recombining Genes that confer tolerance to the herbicide glyphosate | San José of the
Valley,
Nay. | 19/08/1997 | 19/sep/1997 | | | Corn
0.5 have. | Gene CryIA(b) that grants
resistance to European
screwworm | Valley,
Nay. | 19/08/1997 | 19/sep/1997 | | HYBRID PIONEER | Corn
0.5 have. | Gene CryIA(b) that grants
resistance to European
screwworm | Valley,
Nay. | 19/08/1997 | 19/sep/1997 | | HYBRID PIONEER | Corn
0.5 have. | Gene CryIA(b) that grants
resistance to European
screwworm | Sacred Domingo,
BCS. | 19/08/1997 | 19/sep/1997 | | MONGANTO | Corn
0.1 have. | Gene R. Ready that provides resistance to glyphosate | The Mochis,
Sinaloa. | 17/09/1997 | 26/mar/1998 | | MONSANTO | Cotton
55,601 have.
authorized
36,128.59 real | Gene Boligard programs pilot | Cotton Regions | 10/11/1997 | 29/jan/1998 | | MONSANTO | Soybean
12,000 have.
authorized
505.8 have. rea | | Sonora, Sinaloa,
Tapachula, Chis. | 19/02/1998 | 25/mar/1998 | | CIMMAT | Corn
0.0041 have. | Gene CryIA(b) retro crossbreeding | Tlaltizapan, Mor. | 02/12/1997 | 29/jan/1998 | | CIMMYI | Corn
0.0041 have. | Gene CryIA(b) autopolinization | Tlaltizapan, Mor. | 02/12/1997 | 29/jan/1998 | | C.11C. \(\Delta \) | Banana
0.75 have. | Gene that slows the maturation of the fruit | Opposite Hidalgo,
Chis
| 14/01/1998 | 29/jan/1998 | | | Papaya
0.25 have. | Gene that slows the maturation of the fruit | Opposite Hidalgo,
Chis | 14/01/1998 | 29/jan/1998 | | | Papaya
0.25 have. | Gene that provides resistance to the virus of the ring stain | Opposite Hidalgo,
Chis | 14/01/1998 | 29/jan/1998 | | CIICA | Papaya
0.25 have. | Somatic embryos that they slow the maturation of the fruit | Opposite Hidalgo,
Chis | 14/01/1998 | 29/jan/1998 | | CIICA | Pineapple
0.0378 have. | Gene that slows the maturation of the fruit | Opposite Hidalgo,
Chiapas | 14/01/1998 | 29/jan/1998 | | SEMINIS
VEGETABLE SEEDS | Tomato
0.12 have. | slowed maturation | San Quintín. BC. | February of
1998 | 20/jan/1998 | | MEXICAN ASGROW | Corn
0.25 have. | Gene B73 and PAT that
they grant resistance To
the one
herbicide ammonium | The Boat, Jal. | 23/03/1998 | 30/apr/1998 | | MEXICAN | Corn Product of
seed
0.25 have. | Gene B73 and PAT that
they grant resistance To
the one
herbicide ammonium
glufosinate | Tlajomulco of
Zuniga, Jal. | 23/03/1998 | 30/apr/1998 | | MONSANTO | Cotton
(I study of
Effectiveness
Biological) | Gene R. Ready that provides resistance to glyphosate | North Tamps. and
District Lagunera | 27/02/1998 | 05/mar/1998 | | MEXICAN ASGROW | Corn
Evaluation
Agronomic
0.25 have. | Gene B73 and PAT that
grant resistance to
herbicide ammonium
glufosinate | Abasolo, Gto. | 23/03/1998 | 30/apr/1998 | | MEXICAN ASGROW | Corn
Evaluation
agronomic
0.25 have. | Gene B73 and PAT that
grant resistance to
herbicide ammonium
glufosinate | Celaya, Gto. | 23/03/1998 | 30/apr/1998 | | | Cotton
0.33 have. | Gene Klebsiella that grants tolerance to bromoximil | South of Tamps. | 02/04/1998 | 30/apr/1998 | | CINVESTAV | Tobacco
Hothouse | Gene GU | Irapuato, Gto. | 24/04/1998 | 30/apr/1998 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |------------------------|--|--|---|-----------------------|------------------| | MONSANTO | Pope
1 have. | Gene CryIIIA resistance to insects | Saltillo, Coah. | 03/04/1998 | 30/apr/1998 | | HYBRID PIONEER | 0.04 nave. | Gene CryIA(b) resistant to insects | San José of the
Valley
Nay. | 25/06/1998 | 14/jul/1998 | | HARRIS LIVES | Melon
0.25 have. | Gene that slows the maturation of the fruit | Navojoa, is. | 22/04/1998 | 06/jul/1998 | | DNA PLANT
TECNOLOGY | Tomato
12.5 have. | Gene CAC that slows the maturation of the fruit | San Quintín, BC.
and
Culiacán Sinaloa | 15/05/1998 | 02/jul/1998 | | DNA PLANT
TECNOLOGY | Tomato
1.2 have. | Gene CAC that slows the maturation of the fruit | San Quintín; BC. | 14/05/1998 | 02/jul/1998 | | DNA PLANT
TECNOLOGY | Tomato | Gene CAC that slows the maturation of the fruit | San Quintín, BC. | 15/05/1998 | 02/jul/1998 | | MEXICAN SVS | Pumpkin
2.5 have. | Resistance to virus | San Quintín, BC.
and
The Peace, BCS. | 30/07/1998 | 20/aug/1998 | | MEXICAN SVS | Pumpkin
2.5 have. | Resistance to virus | San Quintín, BC.
and
The Peace BCS. | 30/07/1998 | 20/aug/1998 | | MEXICAN SVS | Melon
2 have. | Resistance to virus | The Peace, BCS. | 30/07/1998 | 20/aug/1998 | | DNA PLANT
TECNOLOGY | Tomato
0.5 have. | Gene CAC that slows
the maturation of the fruit | San Quintín, BC.
Culiacán and Cruz
Of Elota, Sinaloa. | 06/08/1998 | 07/oct/1998 | | HYBRID PIONEER | Soybean
10 have. | Recombination Genes
that they confer tolerance
to the herbicide glyphosate | San José of the
Valley,
Nay. | 19/08/1998 | 07/oct/1998 | | СІММҮТ | Tobacco
Hothouse | Gene beta 1,3 - glucanase dmct for apomixis process | | 09/10/1998 | 09/dec/1998 | | СІММҮТ | Corn
0.0195 have. | Gene CryIA(b) retro crossbreeding | Tlaltizapan, Mor. | 21/07/1998 | 10/jan/1999 | | СІММҮТ | Corn
0.0195 have. | Gene CryIA(b) autopolinization | Tlaltizapan, Mor. | 21/07/1998 | 10/jan/1999 | | MONSANTO | Cotton
100 have. | Gene Roundup Ready and
Boligard | South of Sonora
and
Sinaloa | 21/10/1998 | 04/dec/1998 | | MONSANTO | Cotton
73,619 have.
authorized
18.471 real | Pilot Programs with Gene
Boligard that grants
resistance to lepidopteron | Areas Cotton
of the north of the
Republic | 03/11/1998 | 10/feb/1999 | | MONSANTO | Tomato
0.1 have. | 1 Gene CryIA(c) that grants resistance to insects | Culiacán, Sinaloa. | 18/11/1998 | 10/feb/1999 | | ASGROW
VEGETABLES | Pumpkin | Genes that they provide resistance to log virus | Villagran, Gto. and
Hermosillo, Sonora. | | 27/apr/1999 | | MONSANTO | Cotton
180 have. | Genes Boligard and
Roundup Ready | B.C., B.C.S, is.,
Sinaloa., C. Lag.,
Chih., Tamps. | 08/01/1999 | 10/feb/1999 | | RHONE POULENC | Cotton
1.2 have. | Gene BXN that grants tolerance to the bromoxinil | Experimental fields
of INIFAP in the
north of the
Republic | 21/01/1999 | 10/feb/1999 | | RHONE POULENC | Cotton
1.28 have. | Genes BXN and Boligard
that grants tolerance
to the bromoxinl and
resistance to insects
Respectively | Experimental fields
of INIFAP in the
north of the
Republic | 21/01/1999 | 10/feb/1999 | | CINVESTAV | Wheat
Laboratory | Gene CSb that grants tolerance to the aluminum | Irapuato, Gto. | 04/02/1999 | 08/feb/1999 | | CIICA | Papaya | Gene ACC that slows the maturation of the fruit | Opposite Hidalgo,
Chis. | 22/01/1999 | 15/jul/1999 | | HYBRID PIONEER | Soybean
4.5 have. | Gene that provides tolerance to the glyphosate | Navolato, Sinaloa. | 02/02/1999 | 10/feb/1999 | | MONSANTO | Soybean
8,000 have.
authorized
902.3 have. real | Gene that provides tolerance to the glyphosate | Sonora, Sinaloa.,
Tamps.,
North of Ver.,
S.L.P. and Chis. | | 20/apr/1999 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |--|---------------------------------------|--|---|-----------------------|------------------| | UNIVIVERSIDAD
AUTONOMOUS OF
AGUASCALIENTES | HOIDOUSE | Insert of Genes nptII, gus
and list that dog causes
alterations phenotype | | 12/03/1999 | 18/jun/1999 | | DNA PLANT
TECNOLOGY | Tomato
5 have. | Gene that provides bigger shelf life | San Quintín, BC. | 22/03/1999 | 20/apr/1999 | | FLORIGENE
EUROPE | Carnation
0.5 have. in
hothouse | Gene that modifies color of log petals | Tenancingo, Edo.
of Mexico. | 16/04/1999 | 27/apr/1999 | | MEXICAN SVS | Zucchini
11.5 have. | Resistance to virus | San Quintín, BC.
and
The Peace, BCS. | 26/04/1999 | 05/jul/1999 | | MEXICAN SVS | Zucchini
11.5 have. | Resistance to virus | San Quintín BC.
and
The Peace, BCS. | 26/04/1999 | 05/jul/1999 | | MEXICAN SVS | Melon
2 have. | Resistance to virus | The Peace, BCS. | 26/04/1999 | 05/jul/1999 | | HYBRID PIONEER | Soybean
10 have. | Gene that provides tolerance to the glyphosate | Tapachula, Nay. | 28/05/1999 | 05/jul/1999 | | UNAM | Rhizobium etli
0.5 have. | Modification for to increase the fixation of nitrogen | Field of the INIFAP in Celaya, Gto. | 06/07/1999 | 06/oct/1999 | | DNA PLANT
TECNOLOGY | Tomato
0.3 have. | Gene that provides bigger shelf life | San Quintín, BC.
and
Culiacán, Sinaloa. | 11/11/1999 | 15/nov/1999 | | MONSANTO | Cotton
10,000 have. | Gene Roundup Ready that provides tolerance to the herbicide glyphosate | Areas Cotton | 17/09/1999 | 03/dec/1999 | | CALGARY | Canola
0.044 have. | Gene that codes for the bovine protein for the clotting of milk | Mexicali, BC. | 03/09/1999 | 14/jan/2000 | | CALGARY | Linen
0.02 have. | Gene that codes for the bovine protein for the clotting of milk | Mexicali, BC. | 05/10/1999 | 14/jan/2000 | | CIMMYT | Wheat
Hothouse | Genes Bperu and bar for
resistance to pathogen
agents and to ammonium
glufosinato, respectively | Biosecurity
Greenhouse, The
Beat, Edo. of
Mexico | 24/11/1999 | 03/dec/99 | | RHONE POULENC | Cotton
0.7 have. | | Culiacán, Sinaloa.
and Fences of the
Yaqui,
Sonora. | 16/11/1999 | 03/dec/1999 | | AVENTIS
CROPSCIENE | Cotton
1 000 have. | Gene BXN that grants tolerance to the bromoxinil | North of
Tamaulipas. | 03/12/1999 | 02/mar/2000 | | AVENTIS
CROPSCIENCE | Cotton
1,000 have. | Gene BXN that grants tolerance to the bromoxinil | Mexicali, BC. | 03/12/1999 | 02/mar/2000 | | MONSANTO | Cotton
39,549 have. | programs with Gene
Boligard that grants
resistance to
lepidopteron | Areas Cotton
of the north of the
Republic | 02/01/2000 | 02/mar/2000 | | MONSANTO | Cotton
0.5 have. | Boligard II that grants resistance to lepidopteron | South of
Tamaulipas | 02/01/2000 | 05/jun/2000 | | HARRIS LIVES | Melon
0.45 have. | Resistance Gene to the virus CMV, WMV2 AND ZYMV | The Mochis,
Sinaloa. | 10/01/2000 | 29/may/2000 | | MEXICAN SVS | Pumpkin
line CZW3
11.5 have. | Resistance Gene to the virus CMV, WMV2 AND ZYMV | San Quintín, BC.
and
The Peace, BCS. | 14/02/2000 | 29/may/2000 | | MEXICAN SVS | Pumpkin
line ZW20
11.5 have. | Resistance Gene to the virus WMV2 and ZYMV | San Quintín, BC.
and
The Peace, BCS. | 14/02/2000 | 29/may/2000 | | MEXICAN SVS | Melon
9 have. | Resistance Gene to the virus CMV, WMV2 AND ZYMV | The Peace, BCS. | 14/02/2000 | 29/may/2000 | | MONSANTO | Soybean
4,250 have. | Gene that provides tolerance to the glyphosate | Sonora, Sinaloa.,
Tamps., Ver.,
S.L.P.
Chis., Campeche
and Hidalgo | 09/03/2000 | 12/may/2000 | | AVENTIS
CROPSCIENCE | Cotton 80 Have. | Gene BXN that grants tolerance to the bromoxinil | Chihuahua,
District Lagunera
and south of
Tamaulipas | 29/03/2000 | 12/may/2000 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |-----------------------------|----------------------------|--|--|-----------------------|------------------| | HYBRID PIONEER | Soybean
10 have. | Gene that provides tolerance to the glyphosate | Tapachula, Nay. | 06/07/2000 | 03/oct/2000 | | CALGARY | Knapweed
2 have. | Gene that codes for the bovine protein for the clotting of milk | Mexicali, BC. | 16/08/2000 | 15/nov/2000 | | MONSANTO | Cotton
4,000 have. | Pilot Programs with Gene
Bollgard that grants
resistance to lepidopteron | South Sonora | 29/08/2000 | 01/dec/2000 | | MONSANTO | Cotton
11 have. | Boligard II that grants resistance to lepidopteror | Areas Cotton
of the north of the
Republic | 12/09/2000 | 03/oct/2000 | | AVENTIS
CROPSCIENCE | Cotton
0.3 have. | Gene BXN that grants tolerance to the bromoxini | Cd. Obregón, is. | 13/09/2000 | 03/oct/2000 | | EMBASSY OF
UNITED STATES | Cotton
0.1 have. | Gene Boligard that | Field experimental
of
INIFAP in Tecomán,
Cabbage. | 13/09/2000 | 03/oct/2000 | | CINVESTAV | Arabidops is
Laboratory | System of transposons modified | Irapuato, Gto. | 31/10/2000 | 21/nov/2000 | | MONSANTO | Cotton
3,000 have. | Gene Roundup Ready that provides tolerance to the herbicide glyphosate | | 30/11/2000 | 11/dec/2000 | | MONSANTO | Cotton
2,000 have. | Pilot programs with Gene
Boligard that grants
resistance to lepidopteron | Tamaulipas Nte. | 29/11/2000 | 11/dec/2000 | | MONSANTO | Cotton
10,000 have. | Pilot Programs with Gene
Boligard that grants
resistance to lepidopteron
Gene Roundup Ready that
provides tolerance to the
herbicide glyphosate | Baja California | 29/11/2000 | 04/dec/2000 | | MONSANTO | Cotton
2,000 have. | | Baja California | 12/12/2000 | 20/feb/2001 | | MONSANTO | Cotton
7,770 have. | Pilot Programs with Gene
Boligard that grants
resistance to lepidopteron | District Lagunera | 12/01/2001 | 20/feb/2001 | | MONSANTO | Soybean
10 have. | Gene Solution Slaughters
that provides
tolerance to the glyphosate | Sonora | 15/01/2001 | 02/mar/2001 | | MONSANTO | Soybean
10 have. | Gene Solution Slaughters
that provides tolerance to
the glyphosate | | 15/01/2001 | 02/mar/2001 | | MONSANTO | Cotton
4,480 have. | Pilot Programs with Gene
Boligard that grants
resistance to lepidopteron | North Sonora | 15/01/2001 | 02/mar/2001 | | MONSANTO | Soybean
100 have. | Gene Solution Slaughters
that provides tolerance to
the glifosato | | 15/01/2001 | 02/mar/2001 | | MONSANTO | Cotton
21,000 have. | Pilot Programs with Gene
Bollgard that grants
resistance to lepidopteron | and | 08/02/2001 | 09/mar/2001 | | AVENTIS
CROPSCIENCE | Cotton
80 have | Gene BXN that grants tolerance to the bromoxinil | Several Locations | 20/02/2001 | 20/apr/2001 | | MONSANTO | Cotton
2,000 have. | Gene Solution Slaughters
that it provides tolerance
to the herbicide glifosato | Chihuahua | 01/03/2001 | 03/apr/2001 | | MONSANTO | Cotton
1,000 have. | Gene Solution Slaughters
that provides tolerance to
the herbicide glyphosate | | 01/03/2001 | 03/apr/2001 | | MONSANTO | Cotton
1,000 have. | Gene Solution Slaughters
that provides tolerance to
the herbicide glyphosate | | 01/03/2001 | 03/apr/2001 | | CINVESTAV | Banana
0.0338 have. | Genes of bovine human, of
albumins anti fungus and
of
control of the maturation | Tecomán, Cabbage. | 15/03/2001 | 01/nov/2001 | | INSTITUTION | CROP | GENETIC LOCATION OF CHARACTERISTIC EXPERIMENT | APPLICATIO APPROVAL
N DATES DATE | |---------------------------------|-------------------------|---|-------------------------------------| | MONSANTO | Cotton
700 have. | Pilot Programs with the Genes Bollgard and Solution Slaughters that grant resistance to North Sonora lepidopteron and tolerance to glyphosate, respectively | 22/03/2001 05/apr/2001 | | MONSANTO | Cotton 2, 000
Have. | Pilot Programs with the Genes Bollgard and Solution Slaughters that grant resistance to and lepidopteron and tolerance to glyphosate, respectively | 22/03/2001 05/apr/2001 | | MONSANTO | Cotton
4,000 have. | Pilot Programs with the Genes Bollgard and Solution Slaughters that grant resistance to Huasteca lepidopteron and tolerance to glyphosate, respectively | 02/04/2001 13/jun/2001 | | MONSANTO | Cotton
9,270 have. | Pilot Programs with Gene Bollgard that grants Huasteca resistance to lepidopteron | 02/04/2001 13/jun/2001 | | MONSANTO | Soybean
4,900 have. | Gene Solution Slaughters that provides tolerance to Huasteca the glifosate | 18/04/2001 23/may/2001 | | MONSANTO | Soybean
1,500 have. | Gene Solution Slaughters that provides tolerance to Campeche the glifosate | 20/04/2001 23/may/2001 | | MONSANTO | Soybean
3,000 have. | Gene Solution Slaughters
that provides tolerance toChiapas
the glyphosate | 25/04/2001 23/may/2001 | | HYBRID PIONEER | Soybean
10 have. | Gene that provides Tapachula, Nay. tolerance to the glyphosate | 06/06/2001 30/aug/2001 | | INIFAP | Cotton
0.066 have. | Gene Bollgard II that | 07/06/2001 26/jul/2001 | | INIFAP | Cotton
0.066 have. | Gene Bollgard that | 07/06/2001 26/jul/2001 | | INIFAP | Cotton
0.066 have. | Gene Roundup Ready that provides tolerance to the Tecomán, Cabbage. herbicide glifosate | 07/06/2001 26/jul/2001 | | INIFAP | Cotton
0.066 have. | Genes Bollgard and
Roundup Ready that they | 07/06/2001 26/jul/2001 | | VT. MEXICO S. OF
RL. DE C.V. | Tobacco
2 have | Gene NtQPT1-ace of anti
sense for to smaller The Fig, Ver.
content of nicotine | 13/06/2001 25/sep/2001 | | SVS. MEXICAN INC
DECV. | .Zucchini
11.5 have. | Pumpkin lines CZW3 San Quintin BC. resistant to the virus of mosaic of the cucumber The Peace, BCS. (CMV), virus of yellow San Quintin BC. mosaic of Zucchini (ZYMV)and and virus of the mosaic ofThe Peace, BCS. | 12/07/2001 22/oct/2001 | | SVS. MEXICAN INC
DE Cv. | .Pumpkin
11.5 have. | the simple 2 (WMV2) Pumpkin lines ZW20 resistant to the virus of Y ellow mosaic of Zucchini (ZYMV) and virus of the mosaic of simple the 2 (WMV2) | 12/07/2001 22/oct/2001 | | MONSANTO | Cotton
564 have. | Gene Bollgard that
provides resistance to
some insects
lepidopteron | 31/07/2001 13/nov/2001 | | INSTITUTION | CROP | | OCATION OF | APPLICATIO | | |--------------------------|------------------------|--|----------------|------------|-------------| | | | Gene Bollgard 1 Solution | XPERIMENT | N DATES | DATE | | MONSANTO | Cotton
500 have. | Slaughters that provides resistance to some insects and tolerance to the herbicide qlifosate | aloa | 03/072001 | 13/nov/01 | | CINVESTAV | Banana
0.0113 have. | Construction pKYLX80/ACC that provides slowed Tec maturation in fruits | omán, Colima | 24/07/2001 | 01/nov/2001 | | CINVESTAV | Banana
0.019 have. | Construction pKYL80/AFP
and pKYLX80/JI
Construction pBAGG that Tec
code albumins
anti fungus | omán, Colima | 09/08/2001 | 01/nov/2001 | | MONSANTO | Cotton
4,500 have. | Gene Bollgard that provides resistance to Sour some insects lepidopteron | | 03/09/2001 | 21/jan/2002 | | MONSANTO | Cotton
1,500 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteron
and tolerance to herbicide
glyphosate | ora
th | 03/09/2001 | 21/jan/2002 | | MONSANTO | Soybean
50 have | Gene Solution Slaughters
that provides tolerance toSina
the glyphosate | aloa | 19/09/2001 | 12/feb/2002 | | MONSANTO | Cotton
5,000 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteronBaja
and tolerance to herbicide
glifosate | a California | 10/10/2001 | 06/feb/2002 | | MONSANTO | Cotton
15,000 have. | lepidopteron | a California | 10/10/2001 | 06/feb/2002 | | UNIVERSITY OF
CALGARY | Knapweed
8 have | Gene E2-PROTNT with to codification identical to the protein bovine Cul precursory of the coagulation of milk | iacan, Sinaloa | 19/10/2001 | 29/oct/2001 | | MONSANTO | Cotton
5,000 have. | Gene Bollgard that provides resistance to Nort some insects lepidopteron | | 29/10/2001 | 12/feb/2002 | | MONSANTO | Cotton
2,000 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteron Tam
and tolerance to herbicide
glyphosate | naulipas North | 29/10/2001 | 12/feb/2002 | | AVENTIS
CROPSCIENCE | Cotton
200 have. | Tolerant Gene to herbicide
bromoxinil | eral Locations | 26/11/2001 | 04/mar/02 | | MONSANTO | Soybean
4,000 have. | Gene Solution Slaughters
that provides tolerance toSina
the glyphosate | | | 12/feb/2002 | | MONSANTO | Cotton
800 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteronNort
and tolerance to herbicide
glyphosate | th Sonora | 11/01/2002 | 12/feb/2002 | | MONSANTO | Cotton
15,000 have. | Gene Bollgard that provides resistance to some insects lepidopteron | trict Lagunera | 22/01/2002 | 12/mar/2002 | | MONSANTO | Cotton
20,000 have. | Gene Bollgard that
provides resistance
to
some insects
lepidopteron | Chihuahua | 30/01/2002 | 15/mar/2002 | | MONSANTO | Cotton
8,000 have. | Gene Bollgard and Solution
Slaughters that provides | Chihuahua | 18/02/2002 | 15/mar/2002 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |------------------------------|-------------------------|--|------------------------|-----------------------|------------------| | MONSANTO | Cotton
6,000 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteror
and tolerance to herbicide
glyphosate | n District Lagunera | 19/02/2002 | 12/mar/2002 | | MONSANTO | Cotton
4 have | Gene Bollgard II that provides resistance to lepidopteron | District Lagunera | 5/03/2002 | 30/may/2002 | | MONSANTO | Cotton
10,000 have. | Gene Bollgard that provides resistance to some lepidopteron | Huasteca | 03/04/2002 | 30/may/2002 | | MONSANTO | Cotton
6,000 have. | Gene Boligard and Solution
Slaughters that provides
resistance to lepidopteror
and tolerance to herbicide
glyphosate Gene Solution | n
e | 03/04/2002 | 30/may/2002 | | MONSANTO | Soybean
8,000 have. | Slaughters that provides tolerance to the glyphosate | Huasteca | 3/04/02 | 30/may/2002 | | AVENTIS
CROPSCIENCE | Cotton
0.2944 have. | Gene LL25 that confers tolerance to the herbicide glufosinate | eSeveral Locations | 08/04/02 | 30/may/2002 | | MONSANTO | Soybean
3,000 have. | Gene Solution Slaughters
that provides tolerance to
the glyphosate | _O Chiapas | 26/04/05 | 26/jun/02 | | MONSANTO | Soybean
775 have. | Gene Solution Slaughters
that provides tolerance to
the glyphosate | | 30/04/02 | 26/jun/02 | | MONSANTO | Cotton
0.5 have. | Gene Bollgard II that provides resistance to lepidopteron | Huasteca | 30/04/02 | 16/jul/02 | | VT. Mexico, s of RL
of CV | Tobacco
9 have | Gene BT 41 for tobacco
with contained first floor in
Nicotine | nNayarit | 22/05/02 | 16/dec/02 | | INIFAP | Cotton
0.1 have. | Gene Bollgard that provides resistance to lepidopteron | Tecomán, Cabbage. | 11/06/02 | 06/aug/02 | | INIFAP | Cotton
0.1 have. | Gene Roundup Ready tha provides tolerance to the herbicide glyphosate | | 11/06/02 | 06/aug/02 | | INIFAP | Cotton
0.1 have. | Genes Boligard and
Roundup Ready that they
provide
resistance to insects
lepidopteron and tolerance
to the herbicide glyphosate | Tecomán, Cabbage
e | 11/06/02 | 07/aug/02 | | INIFAP | Cotton
0.1 have. | Gene Bollgard II that provides resistance to lepidopteron | Tecomán, Cabbage. | 11/06/02 | 07/aug/02 | | MEXICAN SVS | Zucchini
10.24 have. | ZW20 lines. Gene of
resistance to log virus
WMV2 AND ZYMV | San Quintin
B.C. | 14/08/02 | 11/dic/02 | | MEXICAN SVS | Pumpkin
2.3 have. | CZW3 lines. Gene of resistance to log virus CMV, WMV2 AND ZYMV | San Quintin
,B.C. | 14/08/02 | 11/dic/02 | | HYBRID PIONEER | Soybean
15 have. | Gene that provides tolerance to the herbicide glyphosate | | 21/08/02 | 15/oct/02 | | MONSANTO | Cotton
1,000 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteror
and tolerance to herbicide
glyphosate | nBaja California | 25/09/02 | 03/feb/03 | | MONSANTO | Cotton
7,000 have. | Gene Bollgard that provides resistance to some lepidopteron | Baja California | 25/09/02 | 3/feb/03 | | MONSANTO | Cotton
700 have. | Gene Bollgard that provides resistance to some lepidopteron | South Sonora | 01/10/02 | 11/dic/02 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |-------------------------------|------------------------|--|------------------------|-----------------------|------------------| | MONSANTO | Cotton
100 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteronSo
and tolerance to herbicide
glyphosate | outh Sonora | 01/10/02 | 11/dic/02 | | MONSANTO | Cotton
600 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteron D
and tolerance to herbicide
glyphosate | istrict Lagunera | 04/10/02 | 06/mar/03 | | MONSANTO | Cotton
4,600 have. | Gene Bollgard that provides resistance to D some lepidopteron | istrict Lagunera | 04/10/02 | 06/mar/03 | | MONSANTO | Cotton
8,000 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteronCh
and tolerance to herbicide
glyphosate | hihuahua | 24/10/02 | 06/mar/03 | | MONSANTO | Cotton
400 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteronNo
and tolerance to herbicide
glyphosate | orth Sonora | 7/11/02 | 11/dec/02 | | MONSANTO | Cotton
20,000 have. | Gene Bollgard that provides resistance to Ch some lepidopteron | nihuahua | 7/11/02 | 06/mar/03 | | MONSANTO | Cotton
2,000 have. | Gene Bollgard that provides resistance to No some lepidopteron | orth Sonora | 7/11/02 | 11/dec/02 | | MONSANTO | Cotton
3.5 have. | Gene Bollgard II that provides resistance to Selepidopteron | everal Locations | 13/11/02 | 13/mar/03 | | MONSANTO | Soybean
10 have | Gene Solution Slaughters
that provides tolerance theCh
glifosate | niapas | 15/11/02 | 17/mar/03 | | BAYER
CROPSCIENCE | Cotton
1.2364 have. | Gene with tolerance to herbicide glyphosinate | everal Locations | 19/12/02 | 13/mar/03 | | HYBRID PIONEER | Sovhean | Gene that provides tolerance to the herbicideTa glyphosate. | apachula, Nayarit | 22/01/03 | 22/may/03 | | MONSANTO | Cotton
10,000 have. | Gene Bollgard that | uasteca | 10/02/03 | 26/may/03 | | MONSANTO | Cotton
3,000 have. | Gene Bollgard and Solution
Slaughters that provides
resistance to lepidopteronHu
and tolerance to herbicide
glifosate | | 13/02/03 | 26/may/03 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide | | 12-Sep-03 | 25-Jun-03 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide | | 12-Sep-03 | 25-Jun-03 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide | uasteca | 12-Sep-03 | 25-Jun-03 | | SEEDS
MONSANTO | Alfalfa | Tolerance to the herbicideDi | nd Guanaiuato | 27-Sep-03 | 10-Sep-03 | | SEEDS | Soybean | Tolerance to the herbicide Caglyphosate | ampeche | 27-Sep-03 | 25-Jun-03 | | MONSANTO
SEEDS
MONSANTO | Soybean | Tolerance to the herbicide Yu | ıcatan | 06-May-03 | 25-Jun-03 | | INIFAP - TECOMÁN | ICotton | Tolerance to the herbicide Te glyphosate | ecomán, Colima | 16-May-03 | 10-Sep-03 | | INIFAP - TECOMÁN | lCotton | Resistance to the attack of lepidopteron of | ecomán, Colima | | 10-Sep-03 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |------------------|----------|---|--------------------------------------|-----------------------|------------------| | INIFAP - TECOMÁI | NCotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and | Tecomán, Colima | 16-May-03 | 10-Sep-03 | | Hybrid PIONEER | Soybean | pink worm Tolerance to the herbicide glyphosate | | | 10-Sep-03 | | INIFAP - TECOMÁ | NCotton | Tolerance to the herbicide glyphosate | e
Tecomán, Colima | 29-Jul-03 | 29-Jan-04 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm | Sinaloa | 29-Aug-03 | 03-Dec-03 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
rosy worm and
Tolerance to the herbicide
glyphosate | Sinaloa | 29-Aug-O3 | 03-Dec-03 | | CIMMYT | Wheat | Tolerance wing drought | Edo. of Mexico | 23-Sep-O3 | 22-Dec-O3 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm | South Sonora | 09-0ct-03 | 18-Nov-O3 | | MONSANTO | Cotton | Resistance to the attack of lepidopteron of Bollworm Complex and pink worm and Tolerance to the herbicide glyphosate | South Sonora | 23-0ct-03 | 18-Nov-O3 | | MEXICAN SVS | Zucchini | Resistance to log virus
WMV2 V ZYMV | San Quintin,
Lowers
California | 29-0ct-03 | 03-Sep-04 | | MEXICAN SVS | Zucchini | Resistance to log virus
WMV2, CVM V ZYMV | San Quintin,
Lowers
California | 29-0ct-03 | 03-Sep-04 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm and
Tolerance to the herbicide
glyphosate | Baja California | 03-Nov-O3 | 13 - Feb-04 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
complex bell hill and
nink worm | Baja California | 03-Nov-O3 | 13-Feb-04 | | BAYER | Cotton | Tolerance to the herbicide ammonium glufosinate | ^e Several Locations | 06-Nov-O3 | 13 - Feb-04 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of complex
bell hill and pink worm | | 10-Nov-O3 | 25-Feb-O4 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
rosy worm and Tolerance
to the herbicide glyphosate | District Lagunera | 10-Nov-O3 | 25-Feb-04 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm | Chihuahua | 17-Nov-O3 | 23 - Feb-04 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm | North Sonora | 17-Nov-O3 | 23 - Feb-04 | | MONSANTO | Cotton | Resistance to the attack of lepidopteron of Bollworm Complex and pink worm and Tolerance to the herbicide glyphosate | North Sonora | 17-Nov-O3 | 23-Feb-04 | | INSTITUTION | CROP |
GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |--|---|---|------------------------------|-----------------------|------------------| | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of the
complex bell hill and pink
worm and Tolerance to the
herbicide glyphosate | S | 17/Nov/O3 | 23/Feb/O4 | | MONSANTO | Cotton | Tolerance to the herbicide glyphosate | | 17/Nov/03 | 25/Feb/04 | | MONSANTO | Cotton | Resistance to the attack of lepidopteron of Bollworm Complex and pink worm and Tolerance to the herbicide alyphosate | Several Locations | 17/Nov/03 | 25/Feb/04 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide | | 11/Dec/03 | 12/Apr/04 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide glyphosate | | 11/Dec/03 | 12/Apr/04 | | MONSANTO | Cotton | Tolerance to the herbicide glyphosate | | 14/Jan/04 | 01/Jun/04 | | MONSANTO | Cotton | Resistance to the attack of lepidopteron of Bollworm Complex and pink worm | Huasteca | 14/Jan/04 | 03/Jun/04 | | MONSANTO | Cotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm | Huasteca | 29/Jan/04 | 03/Jun/04 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide glyphosate | | 09/Feb/4 | 08/Jun/04 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide glyphosate | | 27/Feb/4 | 08/Jun/04 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide glyphosate | | 27/Feb/04 | 08/Jun/04 | | SEEDS
MONSANTO | Soybean | Tolerance to the herbicide glyphosate | e
Huasteca | 11/Mar/4 | 08/Jun/04 | | PICTIPAPA | Pope | Resistance to the Smut
It beats (Phytophtora
infestans) of the potato | State of Mexico | 18/Mar/04 | 11/Aug/04 | | HYBRID PIONEER | Soybean | Tolerance to the herbicide glyphosate | e
Tapachula, Nayarit | 01/Jun/04 | 21/Sep/04 | | INIFAP - TECOMÁI | NCotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm and Tolerance
to the herbicide glyphosate | Tecomán, Colima | 15/Jun/04 | 22/Sep/04 | | INIFAP – TECOMÁI | NCotton | Resistance to the attack
of lepidopteron of
Bollworm Complex and
pink worm | Tecomán, Colima | 15/Jun/04 | 22/Sep/04 | | INIFAP - TECOMÁI | NCotton | Tolerance to the herbicide glyphosate | ^e Tecomán, Colima | 15/Jun/04 | 22/Sep/04 | | INIFAP TECOMAN | Cotton Solution Slaughters Flex 0.1 have He doesn't sow | Tolerance to the one Glifosate herbicide | Tecoman,
Colima
- | 15-Jun-O4 | 22-Sep-04 | | DOW
AGROSCIENCES | Cotton
WrdeStrike
0.777ha | Resistance to insects lepidopterons and tolerance to the one herbicide glufosinato of ammonium. | Multisite | 17 - Jun-04 | 19-Nov-04 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | Soya Solution
SIt slaughters
600 have | Tolerance to the one
Glifosate herbicide | Nayarit | 18-Jun-04 | 17 - Dec-04 | | MONSANTO
COMMERCIAL | Cotton
Bollgard
12,000 have | Resistance to the one attack of lepidopterons of the one Bollworm Complex and the pink worm. | South Sonora | 14-Jul-04 | 18-Nov-O4 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |--|--|--|--|-----------------------|------------------| | MONSANTO
COMMERCIAL | Cotton
Bollgard /
Solution
Slaughters
5,600 have | Resistance to the one attack of lepidopterons of the one Bollworm Complex and pink worm and tolerance to the one Glifosate herbicide | Sinaloa | 20-Jul-04 | 17 - Nov-04 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
7,000ha | Tolerance to the one
Glifosate herbicide | South Sonora | 20-Jul-04 | 18-Nov-04 | | MONSANTO
COMMERCIAL | Cotton
Bollgard /
Solution
Slaughters
16,000 have | Resistance to the one attack of lepidopterons of the one Bollworm Complex and pink worm and tolerance to the one Glifosate herbicide | South Sonora | 20-Jul-04 | 18-Nov-04 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
1,400 have | Tolerance to the one
Glifosate herbicide | Sinaloa | 20-Jul-04 | 17-Nov-04 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
5,000 have | Tolerance to the one
Glifosate herbicide | Tamaulipas
North | 20-Jul-04 | 17 - Nov-04 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | Soya Solution
It slaughters
10 have | Tolerance to the one
Glifosate herbicide | Chiapas | 27 - Jul-04 | 17 - Dec-04 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
Flex
14 have | Tolerance to the one 'Glifosate herbicide | Multisite | 06-Aug-04 | 16-Dec-04 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
Flex / Bollgard II
14 have | Tolerance to the one herbicide glifosato and resistance to the one attack of lepidopterons of the one complex belloero and pink worm. | e
Multisite | 06-Aug-04 | 16-Dec-04 | | СІММҮТ | Wheat
102 m2; 600 g | Tolerance to the | Edo. of Mexico | 25-Aug-04 | 15-Dec-04 | | MONSANTO
COMMERCIAL | Cotton
Bollgard
8,000 have | Resistance to the one
attack of
lepidopterons of the one
Bollworm Complex and
the pink worm | Baja California | 01-Sep-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
4,600 have | Tolerance to the one
Glifosate herbicide | Baja California | 01-Sep-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Boligard II /
Solution
Slaughters
3.5ha
He doesn't sow | Resistance to the one attack of lepidopterons of the one Bollworm Complex and pink worm and tolerance to the one Glifosate herbicide | Multisite | 07-Sep-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard /
Solution
Slaughters
10,400 have | Resistance to the one
attack of
lepidopterons of the one
Bollworm Complex and
pink worm
tolerance to the one
Glifosate herbicide | Baja California | 07-Sep-04 | 08-Feb-05 | | BAYER DE MEXICO | Cotton LL25
240 have | Tolerance to the one herbicide glufosinato of ammonium. | Plain
Huasteca and it
Lowers
California | 01-0ct-04 | 09-Feb-Q5 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |---|---|--|---|-----------------------|------------------| | BAYER DE MEXICO | | Tolerance to the one herbicide glufosinato of ammonium. | Multisite | 01-0ct-04 | 09-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
10,000 have | Tolerance to the one
Glifosate herbicide | Chihuahua | 14-0ct-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard /
Solution
Slaughters
20,000 have | Resistance to the one attack of lepidopterons of the one Bollworm Complex and pink worm and tolerance to the one Glifosate herbicide | Chihuahua | 14-0ct-04 | 17-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard
20,000 have | Resistance to the one
attack of
lepidopterons of the one
Bollworm Complex and
the pink worm | Chihuahua | 14-0ct-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard /
Solution
Slaughters
5,000 have | Resistance to the one attack of lepidopterons of the one Bollworm Complex and pink worm and tolerance to the one Glifosate herbicide Resistance to the one attack of | District
Lagunera | 19-0ct-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard
5,000 have | lepidopterons of the one
Bollworm Complex and
the pink worm | District
Lagunera | 19-0ct-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
8,000 have | Tolerance to the one
Glifosate herbicide | District
Lagunera | 19-0ct-04 | 08-Feb-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard /
Solution
Slaughters
800 have | Resistance to the one
attack of
lepidopterons of the one
Bollworm Complex and
pink worm and
tolerance to the one
Glifosate herbicide | North Sonora | 26-0ct-04 | 07-sea-05 | | MONSANTO
COMMERCIAL | Cotton
Solution
Slaughters
320 have | Tolerance to the one
Glifosate herbicide | North Sonora | 26-0ct-04 | 07 - sea-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard
480 have | Resistance to the one
attack of
lepidopterons of the one
Bollworm Complex and
the pink worm | North Sonora | 26-0ct-04 | 07-sea-05 | | CINVESTAV | Banana
16 m2; 1 plant | Production of
you vaccinate human
(Gene LT-TO of E.
COIf). | Tecoman,
Colima | 29-0ct-04 | 10-Jan-05 | | CINVESTAV | Banana
128 m2; 8
plants | Production of
you vaccinate human
(Gene LT-B of E.
coli). | Tecoman,
Colima | 29-0ct-04 | 10-Jan-05 | | UNAM SEEDS AND | seeds
Soya Solution | Resistance to those
Ovirus ZYMV, CMV and
WMV2. | Morelia,
Michoacan and
Celaya,
Guanajuato
Sinaloa | 15-Nov-04 | 28-Jan-05 | | AGROPRODUCTOS
MONSANTO
INIFAP / SEEDS AND | It slaughters
6,000 have | Tolerance to the one Glifosfate herbicide | Tamaulipas, San | 20-Jan-05 | 02-May-05 | | AGROPRODUCTOS
MONSANTO | | Tolerance to the one
Glifosate herbicide | Luis Potosi and
Chiapas | 25-Jan-05 | 10-Jun-05 | | INSTITUTION | CROP |
GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |--|--|--|---|-----------------------|------------------| | MONSANTO
COMMERCIAL | Cotton
Bollgard
2,700 have | Resistance to the one
attack of
lepidopterons of the one
Bollworm Complex and
the pink worm | Plain
Huasteca | 28-Jan-05 | 10-Jun-05 | | MONSANTO
COMMERCIAL | Cotton
Bollgard /
Solution
Slaughters
2,700 have | Resistance to the one attack of lepidopterons of the one Bollworm Complex and pink worm and tolerance to the one Glifosate herbicide | Plain
Huasteca | 28-Jan-05 | 10-Jun-05 | | MONSANTO
COMMERCIAL | Cotton
SolucionFaena
1,600 have | Tolerance to the one
Glifosate herbicide | Plain
Huasteca | 28-Jan-05 | 10-Jun-05 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | Soya Solution
It slaughters
16, 000 have | Tolerance to the one
Glifosate herbicide | Plain
Huasteca | 08-Feb-05 | 10-Jun-05 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | 1,150ha | Tolerance to the one
Glifosate herbicide | Campeche | 10-Feb-05 | 10-Jun-05 | | MONSANTO
COMMERCIAL | Alfalfa Solution
It slaughters
0.16 have | Tolerance to the one
Glifosate herbicide | District
Lagunera | 10-Feb-05 | 08-Jul-05 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | Soya Solution
It slaughters
10,508 have | Tolerance to the one
Glifosate herbicide | Chiapas | 10-Feb-05 | 10-Jun-05 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | Soya Solution | Tolerance to the one
Glifosate herbicide | Yucatan | 01-sea-05 | 13-Jun-05 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | Soya Solution | Tolerance to the one Glifosate herbicide | Quintana Roo | 01-sea-05 | 13-Jun-05 | | For each one of the
Secretary of enviro | nment and Natu
es Genetically M | ations it is had the even is
ral Resources, in cumptin
odified, same that it was | niento of articles 15 | AND 66 of the | e Law of | | INIFAP - TECOMAN | Cotton | Resistance to the one attack of lepidopterons of the one Bollworm Complex and pink worm and tolerance to the one Glifosate herbicide | Tecoman,
Colima | 25-May-05 | 10-0ct-05 | | INIFAP - TECOMAN | Cotton
Bollgard
0.1 have | Resistance to the one attack of lepidopterons of the one Bollworm Complex and the pink worm. | Tecoman,
Colima | 25-May-05 | 10-Oct -05 | | INIFAP - TECOMAN | Cotton
Solution
¡Slaughters
Flex
0.1 have | Tolerance to the one
Glifosate herbicide | Tecoman,
Colima | 25-May-05 | 10-0ct-05 | | DOW
AGROSCIENCES | Corn Herculex
512 m2; 1.48 kg | Resistance to insects lepidopterons (barrenadores and worm cogollero) and tolerance to the one herbicide glufosinato of ammonium. | Campos Experimental del INIFAP: Fence of the Strong one and Fence of Culiacan (Sinaloa) | 01-Jun -05 | 06-0ct-05 | | HYBRID PIONEER | Soya
15 have | Tolerance to the one
Glifosate herbicide | Tapachula,
Nayarit | 01-Jun-05 | 10-0ct-05 | | INSTITUTION | CROP | GENETIC | LOCATION OF | APPLICATIO | APPROVAL | |--|---|---|---|------------|------------| | INSTITUTION | CKOF | CHARACTERISTIC | EXPERIMENT | N DATES | DATE | | HYBRID PIONEER | Corn (Herculex)
576 m2; 1.83 kg | Resistance to insects lepidopterons (barrenadores and worm cogollero) and tolerance to the one herbicide glufosinato of ammonium. | Campos Experimental del INIFAP: Fence of the Yaqui (Sonora) Fence of Culiacan (Sinaloa) South of Tamaulipas (Tamps) | 09-Jun -05 | 06-0ct-05 | | HYBRID PIONEER | | Resistance to insects lepidopterons (barrenadores and worm cogollero) and tolerance to the one herbicide glufosinato of ammonium. | Campos Experimental del INIFAP: Fence of the Yaqui (Sonora) Fence of Culiacan (Sinaloa) South of Tamaulipas (Tamps) | 09-Jun -05 | 11-0ct-05 | | SEEDS AND
AGROPRODUCIOS
MONSANTO | Corn YieldGard
1,280m2; 4.24
kg | | Campos Experimental del INIFAP: Fence of the Yaqui (Sonora) Fence of Culiacan (Sinaloa) South of Tamaulipas and Brave river (Tamps) | 09-Jun -05 | 06-0 ct-05 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | | Tolerance to the one
Glifosate herbicide | Campos Experimental del INIFAP: Fence of the Yaqui (Sonora) Fence of Culiacan (Sinaloa) South of Tamaulipas and Brave river (Tamps) | 09-Jun -05 | 06-0 ct-05 | | MONSANTO
COMMERCIAL | Corn YieldGard
Solution
Slaughters
2
1,024m 2; 3.36
kg | Resistance to insects lepidopterons (barrenadores and worm cogollero) and tolerance to the one Glifosate herbicide | Campos Experimental Del INIFAP: Fence of the Yaqui (Sonora) Fence of Culiacan (Sinaloa) South of Tamaulipas and Brave river (Tamps) | 09-Jun -05 | 06-0ct-05 | | SEEDS AND
AGROPRODUCTOS
MONSANTO | | Resistance to the one
worm of the root
of the corn and
tolerance to the one
Glifosate herbicide | Campos Experimental del INIFAP: Fence of the Yaqui (Sonora) Fence of Culiacan (Sinaloa) South of Tamaulipas and Brave river (Tamps) | 09-Jun -05 | 06-0ct-05 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" Solution | South Sonora | | 10-Feb-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton/"Faena"
Solution | South Sonora | | 10-Feb-06 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |--------------------------------------|---------|---------------------------------------|---|-----------------------|------------------| | MONSANTO
COMMERCIAL | Cotton | Cotton Bollgard | South Sonora | | 10-Feb-06 | | BAYER DE MEXICO | OCotton | Cotton LL25 | Experimental Field
of INIFAP Mexicalli,
Caborca, Valle del
Yaqui, V. De
Juárez, V. Culiacán,
Delicias, La Laguna,
Rio Bravo, South of
Tamaulipas | | 27-Nov-06 | | BAYER DE MEXICO | OCotton | Cotton LL25 | Experimental Field
of INIFAP in
Torreon, Delicias,
Cd. Juarez, North
Tamaulipas | | 27-Nov-06 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" Solution | Baja California | | 03-Mar-06 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" Solution | Torreon, Coahuila,
Cd. Delicias, Chih,
Apizaco, Tlaxcala,
Mixquiahuala,
Hidalgo | | 05-Sep-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton | Mexicali, B.C., San
Luis Rio Colorado,
Sonora | | 27-Feb-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton / "Faena"
Solution | ,Mexicali, B. C., San
Luis Rio Colorado,
Sonora | | 27-Feb-06 | | DOW
AGROSCIENCES | Cotton | Widestrike cotton | Experimental field
of INIFAP La
Laguna, Valle del
Yaqui and South of
Tamaulipas | | 09-Mar-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard cotton / "Faena"
Solution | Comarca Lagunera
(Durango,
Coahuila) | | 07-Mar-06 | | MONSANTO
COMMERCIAL | Cotton | Cotton "faena" solution | Comarca Lagunera
(Durango,
Coahuila) | | 07-Mar-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard cotton | Comarca Lagunera
(Durango,
Coahuila) | | 07-Mar-06 | | MONSANTO
COMMERCIAL | Cotton | Cotton "faena" solution | Chihuahua | | 10-Abr-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard cotton / "faena" solution | Chihuahua | | 10-Abr-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard cotton | Chihuahua | | 10-Abr-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard cotton | North Sonora | | 03-May-06 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" solution | North Sonora | | 03-May-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton | Experimental field
South Tamaulipas | | 05-May-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton / "Faena" solution | | | 03-May-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton / "Faena"
solution | , Experimental field
of INIFAP South of
Tamaulipas | | 05-Sep-06 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" Solution | Experimental field | | 05-Sep-06 | | SEED AND
AGROPRODUCTS
MONSANTO | Soy | Soy "Faena" solution | Planicie Huasteca | | 26-Jun-06 | | SEED AND
AGROPRODUCTS
MONSANTO | Soy | Soy "Faena" solution | Campeche | | 26-Jun-06 | | SEED AND
AGROPRODUCTS
MONSANTO | Soy | Soy "Faena" solution | Chiapas | | 26-Jun-06 | | INSTITUTION | CROP | GENETIC
CHARACTERISTIC | LOCATION OF EXPERIMENT | APPLICATIO
N DATES | APPROVAL
DATE | |------------------------|--------|--|----------------------------------|-----------------------|------------------| | MONSANTO
COMMERCIAL | cotton | Cotton "Faena" solution | Chihuahua | | 24-May-06 | | MONSANTO
COMMRCIAL | Cotton | Bollgard Cotton | Chihuahua | | 24-May-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton / solution | Chihuahua | | 28-Jul-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton / solution | | | 28-Jul-06 | | PHI Mexico | Soy | Soy GTS | Santa Rosa
Tapachula, Nayarit | | 18-Dic-06 | | MONSANTO
COMERCIAL | Cotton | Cotton "Faena" Solution | South Sonora | | 22-Dic-06 | | MONSANTO
COMERCIAL | Cotton | Bollgard cotton | South Sonora | | 22-Dic-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard cotton / solution | | | 22-Dic-06 | | MONSANTO
COMMERCIAL | Cotton | Bollgard cotton / "faena" solution | B.C. | | 20-Feb-07 |
| MONSANTO
COMMERCIAL | Cotton | Bollgard cotton | Valle de Mexicalli,
B.C. | | 20-Feb-07 | | MONSANTO
COMMERCIAL | Cotton | Cotton "faena" solution | Valle de Mexicalli,
B.C. | | 20-Feb-07 | | MONSANTO
COMMERCIAL | Cotton | | Comarca Lagunera | | 23-Mar-07 | | MONSANTO
COMMERCIAL | Cotton | Bollgard
cotton/"Faena"solution | Comarca lagunera | | 23-Mar-07 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" solution | Comarca Lagunera | | 23-Mar-07 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton II /
"Faena" solution | Comarca Lagunera | | 04-Apr-07 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton / "Faena"
Solution | Chihuahua | | 12-Apr-07 | | MONSANTO
COMERCIAL | Cotton | Bollgard Cotton | Chihuahua | | 12-Apr-07 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" solution | Chihuahua | | 12-Apr-07 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Ii Cotton /
"Faena" Solution | Chihuahua | | 17-Apr-07 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" Flex solution | Chihuahua | | 17-Apr-07 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton / "Faena" solution | North Sonora | | 31-May-07 | | MONSANTO
COMMERCIAL | Cotton | Bollgard II C otton / "Faena" solution | North Sonora | | 31-May-07 | | MONSANTO
COMMERCIAL | Cotton | Cotton "Faena" Flex solution | North Sonora | | 31-May-07 | | MONSANTO
COMMERCIAL | Cotton | Bollgard Cotton | North Sonora | | 31-May-07 | | MONSANTO
COMMERCIAL | Cotton | Cotton "faena" solution | North Sonora | | 31-May-07 |